欢迎,客人 | 免费注册 | 会员登录 | 忘记密码?
收藏本页
中国给水排水2024年城镇污泥处理处置技术与应用高级研讨会(第十五届)邀请函 (同期召开固废渗滤液大会、工业污泥大会、高浓度难降解工业废水处理大会)
 
当前位置: 首页 » 行业资讯 » 水业新闻 » 正文

TMTPost CEO: Five Major Misconceptions on China's Catchup in the AI Race AsianFin--It's crucial to a

放大字体  缩小字体 发布日期:2024-05-26  来源:TMTPost CEO: Five Major Miscon  浏览次数:91
核心提示:TMTPost CEO: Five Major Misconceptions on China's Catchup in the AI Race AsianFin--It's crucial to assess how many years China lags behind the United States in AI, said TMTPost founder, Chairperson and CEO Zhao Hejuan, in a recent speech delivered in a c
中国给水排水2024年城镇污泥处理处置技术与应用高级研讨会(第十五届)邀请函 (同期召开固废渗滤液大会、工业污泥大会、高浓度难降解工业废水处理大会)

中国给水排水2024年城镇污泥处理处置技术与应用高级研讨会(第十五届)邀请函 (同期召开固废渗滤液大会、工业污泥大会、高浓度难降解工业废水处理大会)
 

TMTPost CEO: Five Major Misconceptions on China's Catchup in the AI Race

AsianFin--It's crucial to assess how many years China lags behind the United States in AI, said TMTPost founder, Chairperson and CEO Zhao Hejuan, in a recent speech delivered in a conference organized by Cheung Kong Graduate School of Business and Shantou University.

In the speech titled Five Misconceptions About China ’ s Catchup in the AI Race, she noted that many argue that after GPT-3 was released in 2020, and ChatGPT came out in 2022, China quickly developed models similar to GPT-3; after GPT-4 was released, it took no more than two years for China to develop a model comparable to GPT-4. However, that does not mean the gap between Chinese companies and their peers is only one to two years, said Zhao, who is an alumna of Cheung Kong Graduate School of Business.

"I find it rather misleading to use such time frames to describe the gaps because they are generational innovation timescales, not capability gaps," she added.

The following is the main content of the speech edited by TMTPost for brevity and clarity:

Dear alumni, the topic of my speech today is "Five Major Misconceptions on China's Catchup in the AI Race."

From the perspective of TMTPost, I play two roles in the field of AI, both as a researcher and reporter in the AI field, and as a participant in the application of AIGC in the content industry ’ s transformation.

TMTPost has closely followed the development of the AI field since the era of AI 1.0. In the AI 1.0 era, whether from the perspective of Chinese listed companies or applications, we seem to be catching up with the United States. However, in the AI 2.0 era, or the era of AIGC, we came to realize that China has lagged behind overnight.

I listened carefully to the remarks by each guest yesterday. One of the guests argued that China quick catchup after GPT went viral actually indicates that China followed hard on the heels of the United States in terms of strengths and capability building.

However, I'd like to offer a reality check now. I believe we might be overly optimistic in the immediate future. The optimism isn't just confined to the Chinese market; it extends to our expectations regarding the pace of the global AI application boom. I suspect that progress in the short term might not be as fast as everyone's expectations, and in the long term, there's a risk of being solely focused on immediate profitability.

For over a decade, we've been diligently covering developments in this field, closely monitoring AI-related entrepreneurship. However, we find ourselves in a somewhat stagnant position now. It's time to face the reality and strategize our way out of the "pseudo-AI entrepreneurship zone."

Let me explain in detail.

The two most talked-about things in the AI field this year are: the recent release of AlphaFold 3 and the upcoming release of GPT-5.

First, let's talk about the AlphaFold 3 model released by the Google DeepMind team on May 8, and TMTPost was the first in China to report on it and offered the most comprehensive coverage to the readership.

In 2022, the AlphaFold 2 Enhanced Edition was launched. Fast forward two years to today, and we witness the unveiling of the AlphaFold 3 model — a groundbreaking tool designed for predicting protein structures within the realm of biology. The pivotal shift in this evolution lies in the alteration of the underlying calculation methodology and model algorithm.

AlphaFold 3 integrates a combination of Transformer-based generative models and diffusion models. This fusion results in a remarkable advancement, with AlphaFold 3 boasting a prediction accuracy improvement of 100% compared to existing methods.

The prediction accuracy of AlphaFold 2 has already doubled compared to its predecessors, and now it has doubled again. Scientists have conducted comparisons, suggesting that this advancement could propel biological research forward by hundreds of millions of years and potentially save tens of trillions of dollars. This underscores the immense impact of AIGC.

However, China's research achievements in this field are relatively scarce. Today, TMTPost published a video clip of Professor Yan Ning's speech about two years ago. She remarked that accurate prediction of protein-related structures seemed unattainable with AI. Yet, today's AlphaFold 3 release seems to have effectively disproved her assessment.

The second is the upcoming release of GPT-5.

I believe the impact of this event will be as significant as the disruptive technological leap brought by AlphaFold 3, if not greater. The release of GPT-4 surpasses the shock brought by GPT-3.

Why has China been able to develop its own version of models rapidly? I attribute this primarily to open source practices. Before GPT-3, OpenAI operated on open-source principles, and even Google's Transformer paper was open source. However, it shifted to closed source after GPT-3.

This indicates a significant leap from GPT-3 to GPT-4, and the forthcoming GPT-5 is poised to achieve another substantial advancement compared to GPT-4, addressing many existing limitations.

During a meeting with OpenAI founder and CEO Sam Altman last September, he mentioned that OpenAI had been laying the groundwork for GPT-5 for some time. However, if GPT-5 merely offered incremental improvements in capabilities, it wouldn't require such extensive preparation. One fundamental change expected in GPT-5 involves segregating the inference models from the related data and potentially introducing its own search engine.

The AI advancements are remarkable. To put it pessimistically, China is far behind. To put it optimistically, China will have the capacity to catch up.

Next, I would like to explain why we assert that China must be cognizant of its status as a follower in the AI realm, refraining from overestimating its capability and instead dedicating efforts to diligent learning. It's imperative to address a pertinent reality we confront presently, thus necessitating the clarification of several misconceptions to comprehend our standing.

Misconception 1: The Gap between China and the United States in AI is Only 1 to 2 Years.

I believe it's imperative to challenge the prevalent belief that the disparity between China and the U.S. in AI amounts to merely 1 to 2 years. Is it truly such a narrow timeframe? And if so, what substantiates this claim? Many argue that China ’ s performance after the release of GPT-3 in 2020 and that of ChatGPT in 2022 demonstrates our ability to swiftly develop models akin to U.S. innovative products. With the subsequent release of GPT-4, we promptly produced a model on par with it. But does this imply that our gap is indeed only 1 to 2 years? Is this assertion accurate?

I find it somewhat disingenuous to characterize the gap using such temporal parameters, as they correspond to generational innovation cycles rather than our proficiency disparities.

Consider this: given that GPT-5 is unavailable now, we might not be able to develop a similar model in a decade. Yet, upon its release, we might require 2 to 3 years to catch up. Nevertheless, the caliber of the GPT-5 model merely represents a milestone in innovation and iteration for them, not indicative of our own capability level. This distinction is crucial, as it underscores a fundamental gap.

We must understand that this is truly a gap led by innovation, not a situation where we catch up in two years ith a single model.

Misconception 2: China is the Largest Market for AI Patents and Talent Globally.

We often assert, particularly during the AI 1.0 era, that Chinese investors and entrepreneurs making speeches in Silicon Valley would proclaim China's AI superiority over the U.S. A common metric supporting this claim is China's status as the largest market for AI patents and talent worldwide.

This patent market encompasses the volume of AI-related papers published and AI patents filed in China, both of which rank the highest globally. However, what's the reality?

Examining this chart depicting the new generation of global digital technology, we observe that the majority are AI-related papers. China undeniably holds a prominent position in terms of the quantity of AI-related papers. However, when considering the number of top-tier papers or citations, we lag behind.

In essence, while we lead globally in the quantity of papers, we fall behind in terms of top-tier papers or those with high citation rates, not only compared to the U.S. but also countries like Germany, Canada, and Britain.

Now, let's assess our engineering talent.

China indeed produces a substantial number of engineers and computer science professionals from universities. Many tech giants in Silicon Valley actively recruit computer experts from prestigious Chinese institutions such as Tsinghua and Peking University.

However, as of 2022, although China ranked approximately the second globally in terms of top-tier researchers, the number of China ’ s top-tier AI researchers is about one-fifth that of the U.S... And as of 2024, this gap may have widened even further compared to two years ago.

Therefore, the reality doesn't align with the notion that China is the world's AI talent powerhouse.

Misconception 3: The Main Obstacle for China's AI Lies in "Bottlenecked Computing Power".

The primary hurdle for Chinese AI is often identified as "bottlenecked computing power." The prevailing belief is that once we acquire relevant chips through various means, we'll reach the required level.

However, allow me to inject a dose of reality: in this phase of AI 2.0 development, computing power alone isn't sufficient. Model innovation capability and data capability are equally critical. Thus, the current reality is that not only is computing power a bottleneck, but so too are the innovation capabilities of our underlying models and our data capacity.

Let's address data capability first. Many assume that China, being a vast market with abundant consumer and corporate behavior data, must possess ample data resources. But I must be frank: much of this data is either irrelevant or inaccessible.

Earlier this year, during a conversation about meteorological data with a Chinese-American scientist who advises the Chinese Meteorological Administration, I mentioned that there are companies promoting models for meteorological calculations. The scientist bluntly stated that almost all of our meteorological data is useless due to a lack of organization, induction, and integration of historical meteorological data into computable formats.

Currently, China faces a significant deficiency in this regard. In the U.S., the most crucial aspect of the AI ecosystem is the development of the data market. However, in China, theoretically, there is no mature data market. This underscores a critical aspect of ecosystem development: the establishment of a robust data market. Without a mature data market, what meaningful calculations can be made?

Model companies in China may boast leading computing capabilities domestically, but the entire Chinese data market comprises less than 1% of the global data market. Moreover, when considering the efficacy of all data, including research and user application data, videos, or texts, the majority of mainstream global data, particularly research and user application data, is predominantly in English.

Consequently, if we cannot effectively compute with English data, how can we develop competitive large models of our own? This presents a significant challenge. That's why I emphasize that the bottleneck faced by the US isn't solely related to computing power. It encompasses the entire ecosystem, from computing power to innovation in underlying models, to data capabilities, and the establishment of a robust data market. Unfortunately, we are falling behind in all these aspects. Considering the time factor, it's extremely challenging to build up this capability adequately within ten years.

Misconception 4: Closed-Source Large Models vs. Open-Source Large Models: Which Is Better?

Recently, entrepreneurs and internet personalities have engaged in a debate regarding the superiority of closed-source versus open-source large models. However, I believe this debate is somewhat irrelevant; what truly matters is which approach is more suitable for a given context.

Both open-source and closed-source models come with their own set of advantages and disadvantages, much like the comparison between iOS ( closed-source ) and Android ( open-source ) operating systems. Each has its strengths and weaknesses. Presently, particularly in terms of performance, especially concerning large language models, where computations often involve tens of billions or even trillions of data points, closed-source models tend to exhibit significantly higher performance compared to their open-source counterparts.

For many applications or specific scenarios, the necessity for every model to be as large as tens of billions may not be crucial. Hence, open-source models remain viable to a certain extent.

For entities like OpenAI, aiming for Artificial General Intelligence ( AGI ) , closed-source models may expedite the concentration of resources and funds towards achieving the AGI goal more swiftly and efficiently.

However, for widespread application and increased iterations, open-source large models are also indispensable. Thus, we should transcend the debate over whether open-source or closed-source large models are superior. Instead, the paramount consideration should be whether we possess the capability for innovation and originality, rather than merely imitating at a basic level.

In discussions about a "hundred-model battle" or a "thousand-model battle," if each of our models harbors its own innovative elements and contributes inventive functions within its respective domains, then the quantity of models ceases to be an issue.

Indeed, in a scenario like a "hundred-model battle" or a "thousand-model battle" where innovation points are absent, and only low-level imitation and replication prevail, the necessity for numerous models diminishes. Thus, the crux of the matter lies in whether we can genuinely establish ourselves on the global stage in terms of model innovation capability. This is a matter that warrants meticulous consideration.

Misconception 5: The Explosion of AI in Major Vertical Industries Will Happen Quickly.

In China, there's often talk about an imminent explosion in vertical industries propelled by AI, with this year being touted as the inaugural year for large-scale model applications to surge. However, I've been cautioning friends that this year likely won't mark the explosion of AI in vertical industries. While it might signify the start of applications, it's not an explosion. Such transformative shifts don't occur overnight because every progression adheres to certain rules, and industrial development follows a distinct pattern.

The fundamental issue is that our overall infrastructure capability hasn't yet met the threshold for widespread industrial applications.

Consider this: even if our SORA or other applications achieve 50% efficiency, does that imply we can deploy them in 50% of applications? Not necessarily. If industrial applications demand a 90% efficiency threshold, and you're only at 50% efficiency, or even 89%, rapidand widespread application in that industry becomes unattainable.

It's important to realize that the bottleneck isn't just China's computing power; it's a global bottleneck affecting computing power worldwide, including American companies. That's why, despite OpenAI's advancements with GPT-5 and GPT-6, progress remains sluggish. At its core, large AI models rely on "brute force" – having sufficiently vast data, computing power, and energy. Without these resources, they'll hit bottlenecks, and progress will only inch forward.

Many companies may entertain the idea that since Chinese firms acknowledge their inferiority in technological innovation compared to the US, yet boast larger market sizes and stronger application capabilities, should they prioritize entrepreneurship and application development for swift success or results?

However, I believe this might hold true in the long term, but not necessarily in the short term.

Even OpenAI CEO Sam Altman stated that 95% of startup companies rely on large models for development, but each major iteration of large models replaces a cohort of startup firms.

AI doesn't operate outside the realm of general business laws. So, even if AI is deployed, it won't automatically supplant existing products until foundational capabilities have reached a certain threshold.

This concern was also echoed by the founder of Pika during our conversation earlier this year. When I asked if she considered Runway as Pika's primary competitor, she pointed to OpenAI as her main concern because of their inevitable development of multimodal technology. So, I believe that until foundational capabilities reach a certain level, newly developed AI applications won't necessarily displace existing ones.

Since the fundamental infrastructure capabilities haven't reached the stage of industry transformation, we can't herald a "booming" new era of AI.

Despite claims that China's mobile internet applications are global frontrunners, our current historical juncture doesn't align with the internet era or the explosion phase of mobile internet applications. Instead, we're in the current stage of AI development, akin to the early phase of Cisco, rather than the post-internet development stage.

Today's NVIDIA is like the Cisco of the past, when Cisco dominated the US market and its stock price rose 60 times in a year. At that time, were there any noteworthy internet companies? Many of today's internet companies might not have appeared back then. Later, with the improvement of basic infrastructure capabilities, the development of communication technology from 2G to 4G, the improvement of network technology, and the emergence of mobile internet and long and short video applications.

The current state of AI applications is primarily focused on enhancing industrial efficiency, but achieving a complete transformation of industries will require considerable time and patience.

This is why we refer to it as weak artificial intelligence, and China's advantage in its vast market cannot be fully leveraged at present. In the short term, the primary focus remains on content generation-related auxiliary tools, such as search, question answering, text and image processing, and text-to-audio/video conversion.

So, how should we navigate this landscape?

I believe it's imperative to establish a social consensus regarding our actions in the global arena and during the course of AI development.

First and foremost, we must prioritize enhancing fundamental innovation and fostering long-term capacity building.

This involves building a robust ecosystem, beginning with education. Initiatives such as establishing AI education programs, evaluating university education systems, and implementing frameworks for academic openness and collaboration should revolve around fostering innovative technological capabilities in AI. Additionally, we must enhance the foundational innovation capacities required for large model development. Without this groundwork, all other efforts would be akin to "water without a source."

Second, we must adopt a patient approach to navigate the AI explosion cycle across various industrial application scenarios. Every industry transformed by AI undergoes a cyclical process starting from changes in underlying technology, and this transformation won't occur overnight or in a single leap.

I firmly believe that each industry potentially influenced by AI will experience a bottom-up transformation and initiate a new cycle for the industry. It's not about immediate changes at the application layer. This principle applies to sectors such as media, robotics, manufacturing, biopharmaceuticals, and more. While they will all undergo disruptive effects, the ability of our fundamental research capabilities to keep pace becomes paramount.

Every industry begins its journey with foundational capabilities and infrastructure construction from ground zero, constituting the real industrial cycle.

Thirdly, we need to adopt a more open mindset to embrace the competition and challenges presented by global AI development without limiting ourselves.

While some may argue that Americans are holding us back, I believe it's essential that we don't hinder our own progress. This is why I advocate against engaging in low-level imitative competition. Instead, we should consider taking a more proactive approach in AI innovation, even if it means taking a break in AI governance, norms, and ethical frameworks, and embracing a more open attitude towards advancement.

I sincerely hope that our advancements in AI research won't follow the same trajectory as the beaten path of new energy vehicles. While there were innovations in new energy vehicles a decade ago, such as in intelligent experiences and battery technology, today, including Xiaomi's entry, we find ourselves stuck in low-level, repetitive pursuits that hinder our ability to progress.

So, I hope our basic research capabilities and innovation capabilities can progress faster, and we should maintain patience in our endeavors.

Lastly, I'd like to recommend TMTPost's new product, AGI. TMTPost has been a significant contributor and participant in the AI field, and AGI is its latest information offering. AGI primarily focuses on cutting-edge AI information, aggregating global AI technology trends. Through various content formats centered around in-depth analysis, it explores industry trends, technological innovations, and business applications, delivering the latest and most relevant AI insights to enterprises and users. AGI aims to present a comprehensive and dynamic view of the AI landscape.

 
微信扫一扫关注中国水业网/>
</div>
<div class= 
 
[ 行业资讯搜索 ]  [ 加入收藏 ]  [ 打印本文 ]  [ 关闭窗口 ]

 
0条 [查看全部]  相关评论

 
推荐图文
Water & Ecology Forum: 水与生态新起点 直播时间:2024年5月24日(周三)14:30 2024-05-24 14:30:00 开始 中国水环境治理存在的问题及发展方向 直播时间:2024年5月28日(星期二)14:00—16:00 2024-05-28 14:00:00 开始
5月22日下午丨《城镇排水管网系统诊断技术规程》宣贯会 直播时间:2024年5月22日(周三)14:00-16:00 2024-05-22 14:00:00 开始 双碳背景下污泥处置资源化路径探索--杜炯  教授级高级工程师,上海市政工程设计研究总院(集团)有限公司第四设计院总工程师,注册公用设备工程师、注册咨询工程师(投资),上海土木工程学会会员、复旦大学资源
JWPE 网络报告/用于快速现场废水监测的折纸微流体装置 直播时间:2024年5月13日(星期一)19:00 2024-05-13 19:00:00 -杨竹根  英国克兰菲尔德大学教授、高级传感器实验 紫外光原位固化法管道修复全产业链质量控制倡议 直播时间:2024年5月7日(星期二)9:00-16:30 2024-05-07 09:00:00 开始
华北院 马洪涛 副总工:系统化全域推进海绵城市建设的应与不应——海绵城市建设正反案例1 直播时间:2024年4月30日(周二)9:30 2024-04-30 09:30:00 开始 高效纳滤膜:中空纤维纳滤膜的特点与应用 直播时间:2024年4月27日(周六)10:00-11:00 2024-04-27 10:00:00 开始-先进水技术博览(Part 14)
聚力水务科技创新、中德研讨推进行业高质量发展 ——特邀德国亚琛工业大学Max Dohman 直播时间:2024年4月14日(周日)15:00 2024-04-14 15:00:00 开始 康碧热水解高级厌氧消化的全球经验和展望 | 北京排水集团高安屯再生水厂低碳运营实践与探索 直播时间:2024年4月10日(周三)14:00—16:00 2024-04-10 14:00:00 开始
世界水日,与未来新水务在深圳约一个高峰论坛 直播时间:2024年3月22日(周五)08:30—17:30 2024-03-22 08:30:00 开始 中国给水排水直播:直播时间:2024年3月14日(周四)14:00 2024-03-14 14:00:00 开始    题目:占地受限情况下的污水厂水质提升解决方案 主讲人:程忠红, 苏伊士亚洲 高级
华北设计院:高密度建成区黑臭水体整治效果巩固提升要点分析 直播时间:2024年3月4日(周一)9:30 2024-03-04 09:30:00 开始 2月23日|2024年“云学堂科技学习周”暨第一届粤港澳大湾区青年设计师技术交流与分享论坛 直播时间:2024年2月23日(星期五)9:00—17:00 2024-02-23 09:00:00 开始
2月22日|2024年“云学堂科技学习周”暨第一届粤港澳大湾区青年设计师技术交流与分享论坛 直播时间:2024年2月22日(星期四)9:00—18:00 2024-02-22 09:00:00 开始 2月21日|2024年“云学堂科技学习周”暨第一届粤港澳大湾区青年设计师技术交流与分享论坛 直播时间:2024年2月21日(星期三)9:00—18:00 2024-02-21 09:00:00 开始
大湾区青年设计师论坛直播预告(第一届粤港澳大湾区青年设计师技术交流论坛)  “醒年盹、学好习、开新篇”2024年“云学堂科技学习周”暨第一届粤港澳大湾区青年设计师技术交流与分享论坛 山东日照:“乡村之肾”监管装上“智慧芯”    日照市生态环境局农村办负责人时培石介绍,农村生活污水处理系统被称为“乡村之肾”,对于农村水环境的改善发挥着重要作用
人工湿地国际大咖/西安理工大学赵亚乾教授:基于人工湿地技术的污水净化之路 直播时间:2024年1月30日(星期二)19:00 2024-01-30 19:00:00 开始 马洪涛院长:城市黑臭水体治理与污水收集处理提质增效统筹推进的一些思考 直播时间:2024年1月25日 10:00 2024-01-25 10:00:00 开始
2024年水务春晚 直播时间:2024年1月18日(周四)18:00—22:00 2024-01-18 18:00:00 开始 《以物联网技术打造新型排水基础设施》 直播时间:2024年1月11日(星期四)15:00 2024-01-11 15:00:00 开始--刘树模,湖南清源华建环境科技有限公司董事长,清华大学硕士研究生
WPE网络报告:作者-审稿-编辑视野下的高水平论文 直播时间:2024年1月10日(星期三)19:00 2024-01-10 19:00:00 开始 核心期刊:中国给水排水》继续入编北大《中文核心期刊要目总览》 中国给水排水核心科技期刊
直播丨《城镇供水管网漏损控制及评定标准》宣贯会 直播时间:2023年12月27日 09:30—11:00 2023-12-27 12:00:00 开始 【直播】【第五届水利学科发展前沿学术研讨会】王浩院士:从流域视角看城市洪涝治理与海绵城市建设
先进水技术博览(Part 13)|水回用安全保障的高效监测技术 中国城镇供水排水协会城镇水环境专业委员会2023年年会暨换届大会 直播时间:2023年12月16日(周六)08:30—18:00 2023-12-16 08:30:00 开始
第二届欧洲华人生态与环境青年学者论坛-水环境专题 直播时间:2023年12月9日(周六)16:00—24:00 2023-12-09 16:00:00 开始 JWPE网络报告:综述论文写作的一点体会 直播时间:2023年11月30日(星期四)19:00 2023-11-30 19:00:00 开始
WaterInsight第9期丨强志民研究员:紫外线水消毒技术 再生水 水域生态学高端论坛(2023)热带亚热带水生态工程教育部工程研究中心技术委员会会议 直播时间:2023年11月29日(周三) 09:00—17:40 2023-11-29 09:00:00 开始
中国给水排水直播:智慧水务与科技创新高峰论坛 直播时间:2023年11月25日(周六) 13:30 2023-11-25 13:30:00 开始 中国水协团体标准《城镇污水资源与能源回收利用技术规程》宣贯会通知 中国城镇供水排水协会
2023年11月14日9:00线上举行直播/JWPE网络报告:提高饮用水安全性:应对新的影响并识别重要的毒性因素 直播主题:“对症下药”解决工业园区污水处理难题   报告人:陈智  苏伊士亚洲 技术推广经理 直播时间:2023年11月2日(周四)14:00—16:00 2023-11-02 14:00:00 开始
10月29日·上海|市政环境治理与水环境可持续发展论坛 BEST第十五期|徐祖信 院士 :长江水环境治理关键      直播时间:2023年10月26日(周四)20:00—22:00 2023-10-26 20:00:00 开始
《水工艺工程杂志》系列网络报告|学术论文写作之我见 直播时间:2023年10月19日(周四)19:00 2023-10-19 19:00:00 开始 污水处理厂污泥减量技术研讨会 直播时间:2023年10月20日13:30-17:30 2023-10-20 13:30:00 开始
技术沙龙 | 先进水技术博览(Part 12) 直播时间:10月14日(周六)上午10:00-12:00 2023-10-14 10:00:00 开始 直播题目:苏伊士污泥焚烧及零碳足迹概念污泥厂 主讲人:程忠红 苏伊士亚洲 技术推广经理  内容包括: 1.	SUEZ污泥业务产品介绍 2.	全球不同焚烧项目介绍 3.	上海浦东污泥焚烧项目及运营情况
中国给水排水第十四届中国污泥千人大会参观项目之一:上海浦东新区污水厂污泥处理处置工程 《水工艺工程杂志》系列网络报告 直播时间:2023年9月26日 16:00  王晓昌  爱思唯尔期刊《水工艺工程杂志》(Journal of Water Process Engineering)共同主
中国给水排水2024年污水处理厂提标改造(污水处理提质增效)高级研讨会(第八届)邀请函暨征稿启事  同期召开中国给水排水2024年排水管网大会  (水环境综合治理)  同期召开中国给水排水 2024年 海绵城市标准化产业化建设的关键内容 结合项目案例,详细介绍海绵城市建设的目标、技术体系及标准体系,探讨关键技术标准化产业化建设的路径,提出我国海绵城市建设的发展方向。
报告题目:《城镇智慧水务技术指南》   中国给水排水直播平台: 主讲人简介:  简德武,教授级高级工程师,现任中国市政工程中南设计研究总院党委委员、副院长,总院技术委员会副主任委员、信息技术委员会副主 第一轮通知 | 国际水协第18届可持续污泥技术与管理会议 主办单位:国际水协,中国科学院  联合主办单位:《中国给水排水》杂志社 等
技术沙龙 | 先进水技术博览(Part 11) 直播时间:8月19日(周六)上午10:00-12:00 2023-08-19 10:00:00  广东汇祥环境科技有限公司  湛蛟  技术总监  天津万 中国水业院士论坛-中国给水排水直播平台(微信公众号cnww1985):自然—社会水循环与水安全学术研讨会
WaterInsight第7期丨掀浪:高铁酸钾氧化技术的机理新认知及应用 直播时间:2023年8月5日(周六)上午10:00-11:00 2023-08-05 10:00:00 开始 直播:“一泓清水入黄河”之山西省再生水产业化发展专题讲座 直播时间:2023年7月23日(周日 )08:00-12:00 2023-07-23 08:00:00 开始
珊氮自养反硝化深度脱氮技术推介会 直播时间:2023年7月21日(周五) 欧仁环境颠覆性技术:污水厂扩容“加速跑”(原有设施不动,污水处理规模扩容1倍!出水水质达地表水准IV类标准!),推动污水治理提质增效。  诚征全国各地污水厂提标扩容工程需求方(水务集团、BOT公司、设
直播预告|JWPE网络报告:自然系统中难降解污染物去除的物化与生化作用及水回用安全保障 中国给水排水 直播题目: 高排放标准下污水中难降解COD的去除技术     报告人:苏伊士亚洲 技术推广经理 程忠红
WaterTalk|王凯军:未来新水务 一起向未来  For and Beyond Water 中国环境科学学会水处理与回用专业委员会以网络会议形式举办“水与发展纵论”(WaterTalk)系列学术报 5月18日下午 14:00—16:00 直播  题目: 高密度沉淀池技术的迭代更新 主讲人: 程忠红 苏伊士亚洲 技术推广经理  大纲:  高密池技术原理 不同型号高密池的差异和应用区别 高密池与其他
BEST|绿色低碳科技前沿与创新发展--中国工程院院士高翔教授  直播时间:2023年4月30日 14:00—16:00 2023-04-30 14:00:00 开始 日照:“碳”寻乡村振兴“绿色密码”  凤凰网山东    乡村生态宜居,乡村振兴的底色才会更亮。我市坚持乡村建设与后续管护并重,市、区、镇联
BEST论坛讲座报告第十三期(cnwww1985):全球碳预算和未来全球碳循环的不稳定性风险 The global carbon budget and risks of futur 国际水协IWA 3月17日直播:3月17日 国际水协IWA创新项目奖PIA获奖项目介绍分享会 直播时间:2023年3月17日 9:00—11:30 2023-03-17 09:00:00 开始
中国给水排水直播:云中漫步-融合大数据、人工智能及云计算的威立雅智慧水务系统Hubgrade 直播时间:2023年3月15日 中国给水排水直播平台会议通知 | 2023污泥处理处置技术与应用高峰论坛(清华大学王凯军教授团队等)
中国污水千人大会参观项目之一: 云南合续环境科技股份有限公司  海口市西崩潭水质净化中心 中国给水排水 Water Insight直播:刘锐平  清华大学 环境学院 教授 博士生导师—高浓度硝酸盐废水反硝化脱氮过程强化原理与应用 会议时间:2023.1.7(周六)10:00—11:00
智慧水务的工程全生命周期实践分享 直播时间:2023年1月6日 15:00-16:00 对话嘉宾:窦秋萍  华霖富水利环境技术咨询(上海)有限公司  总经理 主持人:李德桥   欧特克软件(中国)有限 苏伊士 直播时间:12月30日14:00-16:00直播题目:污泥处理处置的“因地制宜和因泥制宜” 主讲人:程忠红,苏伊士亚洲  技术推广经理 特邀嘉宾:刘波 中国市政工程西南设计研究总院二院总工 教
苏伊士 直播时间:12月27日14:00-16:00;复杂原水水质下的饮用水解决方案    陈智,苏伊士亚洲,技术推广经理,毕业于香港科技大学土木与环境工程系,熟悉市政及工业的给水及污水处理,对苏伊士 曲久辉  中国工程院院士,美国国家工程院外籍院士,发展中国家科学院院士;清华大学环境学院特聘教授、博士生导师;中国科学院生态环境研究中心研究员
基于模拟仿真的污水处理厂数字化与智慧化:现状与未来 直播时间:2022年12月28日(周三)9:30—12:00 2022城镇溢流污染控制高峰论坛|聚焦雨季溢流污染控制的技术应用与推广 中国给水排水
王爱杰 哈尔滨工业大学教授,国家杰青,长江学者,国家 领军人才:广州大学学术讲座|低碳水质净化技术及实践 直播时间:2022年12月18日 9:30 国际水协会哥本哈根世界水大会成果分享系列网络会议 直播时间:2022年12月15日 20:00—22:00
德国专场直播主题:2022 中国沼气学术年会暨中德沼气合作论坛 2022 中国沼气学术年会暨中德沼气合作论坛德国专场 时间:2022年12月20日  下午 15:00—17:00(北京时间) 2022中国沼气学会学术年会暨第十二届中德沼气合作论坛的主论坛将于12月15日下午2点召开
技术交流 | 德国污水处理厂 计算系列规程使用介绍 城建水业 WaterInsight首期丨王志伟教授:膜法水处理技术面临的机遇与挑战 直播时间:2022年12月10日 10:00—11:00
处理工艺专场|水业大讲堂之六——城市供水直饮安全和智慧提质 直播时间:2022年12月8日 8:30—12:15 建设管理专场|水业大讲堂之六——城市供水直饮安全和智慧提质 直播时间:2022年12月7日 14:00—17:15
国际水协会哥本哈根世界水大会成果分享系列网络会议 直播时间:2022年12月8日 20:00—22:00 Training Course for Advanced Research & Development of Constructed Wetland Wastewater Treatment Tech
12月3日|2022IWA中国漏损控制高峰论坛 直播时间:2022年12月3日(周六)9:00—17:00 2022-12-03 09:00:00 开始 国际水协会哥本哈根世界水大会成果分享系列网络会议(第八期) 直播时间:2022年12月1日 20:00—22:00 2022-12-01 20:00:00 开始
中国给水排水直播:智慧输配专场|水业大讲堂之六——城市供水直饮安全和智慧提质 直播时间:2022年11月30日 14:00—17:05 2022-11-30 14:00:00 开始 国际水协会哥本哈根世界水大会成果分享系列网络会议(第七期) 直播时间:2022年11月25日 20:00—22:00 2022-11-25 20:00:00 开始
国标图集22HM001-1《海绵城市建设设计示例(一)》首次宣贯会   直播时间:2022年11月24日 13:30—17:30 中国给水排水直播平台 【 李玉友,日本国立东北大学工学院土木与环境工程系教授,博导,注册工程师】颗粒污泥工艺的研究和应用:从UASB到新型高效脱氮和磷回收
中国建科成立70周年|市政基础设施绿色低碳发展高峰论坛   直播时间:2022年11月22日 13:30—18:25   2022-11-22 13:30:00 开始 国际水协会哥本哈根世界水大会成果分享系列网络会议(第六期)   直播时间:2022年11月22日 20:00—22:00
会议预告| 国际水协会哥本哈根世界水大会成果分享系列网络会议(第五期) 中国给水排水 奋进七十载 起航新征程|中国市政华北院第十届科技工作会议暨庆祝建院七十周年大会  直播时间:2022年11月18日 9:30   2022-11-18 09:00:00 开始
樊明远:中国城市水业的效率和服务要做一个规范     樊明远 世界银行高级工程师 黄绵松  北京首创生态环保集团股份有限公司智慧环保事业部总经理,正高级工程师  获清华大学博士学位:海绵城市系统化运维的挑战与实践  直播时间:2022年11月16日 18:30  黄绵松  北京
全国节水高新技术成果展云端活动周寻水路  污水回用专场      转发直播赠送  中国给水排水电子期刊  !!!  直播抽奖 100份 中国给水排水电子期刊  !!! 首届全国节水高新技术成果展即将开幕,同步举行的节水时光云端活动周”也将于2022年11月15日10:00-12:00 、14:30-17:00,在云端与水务行业的专家朋友见面!    在这即将到来激动
会议预告| 国际水协会哥本哈根世界水大会成果分享系列网络会议(第四期) 中国给水排水 国标图集22HM001-1《海绵城市建设设计示例(一)》首次宣贯会
国际水协会哥本哈根世界水大会成果分享系列网络会议 直播时间:2022年11月3日 16:00—18:00 2022-11-03 16:00:00 开始 中国给水排水直播 会议预告 | 国际水协会哥本哈根世界水大会成果分享系列网络会议 国合环境
推荐行业资讯
点击排行