编者按:厌氧氨氧化(ANAMMOX)因无需氧气和有机物而被冠以可持续污水处理技术,以致学界对其研究趋之若鹜并愈演愈烈。然而,20多年过去了,过热的研究与少有的工程应用形成了巨大反差,这一现象耐人寻味。因此,有必要对产生这种反差现象的原因进行理性分析,以期获得对ANAMMOX技术工程应用场景以及运行瓶颈的清晰信息。分析表明,ANAMMOX工程化步履蹒跚的主要原因乃应用场景误区与运行控制难度。ANAMMOX技术定位于高氨氮(NH4+)、低有机物(COD)浓度厌氧消化液或类似工业废水,即,属于应用场景较小的小众技术。再者,实现ANAMMOX的关键是前端与之匹配的亚硝酸氮(NO2-)积累,而这恰恰成为其运行成败的关键。尽管存在着多种让NO2-积累的方法,但实现其稳定运行最后均归结为精准的控制技术,因为ANAMMOX本身以及NO2-积累所需要的环境窗口均十分狭窄。另一方面,ANAMMOX过程本身并不产生强温室气体——氧化亚氮(N2O,温室效应为CO2的265倍),但无论是短程硝化(PN)还是短程反硝化(PD)均涉及N2O释放、且量并不低。这就让原本可持续的ANAMMOX工艺蒙上了应用阴影。因此,对ANAMMOX的研究应适当降温,即使是针对性的应用场景也应重新评估其碳排放问题。该文于2023年9月8日已在《环境科学学报》在线发表。
文章亮点
01 中国已成为ANAMMOX研究大国,几乎统领世界相关研究。但20余年的丰硕研究成果并没有导致太多的工程应用,现象耐人寻味。
02 ANAMMOX技术定位于高氨氮(NH4+)、低有机物(COD)浓度厌氧消化液或类似工业废水,即,属于较窄应用场景的小众技术。
03 ANAMMOX所需电子接受体亚硝酸氮(NO2-)获得是其运行成败的关键,而各种NO2-积累方法最终均归结为精准的运行控制技术。这是因为ANAMMOX本身以及NO2-积累所需环境窗口十分狭窄,难以驾驭。
04 短程反硝化耦合ANAMMOX与短程硝化+ANAMMOX的可持续初衷有些偏离,因为前者在整个反应过程中多消耗12.5%的O2和70%的COD。
05 ANAMMOX过程本身固然并不产生强温室气体——氧化亚氮(N2O),但无论是短程硝化还是短程反硝化均涉及N2O释放问题。
1 前言
20世纪90年代初,荷兰TNO环境研究所Mulder从流化床工程反应器中发现厌氧氨氧化(ANAMMOX)现象。随后,代尔夫特大学(TU Delft)Kluyver生物技术实验室Keunen等从微生物学角度分离、确认了ANAMMOX细菌存在,并对其生理、生化特点进行了初步研究。2001年,代尔夫特大学Kluyver生物技术实验室Jetten等以O2为限制条件控制短程硝化过程,提出了生物膜内一步式完全自养脱氮(CANON)工艺;在此基础上,同一实验室生物工艺组van Loosdrecht与荷兰Paques公司合作,开始研发ANAMMOX应用工艺,并在2002年成功将世界上首座ANAMMOX工程反应器应用于鹿特丹Dokhaven污水处理厂污泥厌氧消化液处理高氨氮尾水。
ANAMMOX以NO2-作为电子受体可将氨氮(NH4+)直接氧化为氮气(N2)。显然,NO2-转化、富积是ANAMMOX成功与否的关键。于是,短程硝化(Partial nitrification, PN)耦合ANAMMOX工艺应运而生(PN/A)。PN/A是完全自养脱氮工艺,具有3个特点:①仅50% NH4+在硝化第一段(AOB/短程硝化)需要耗氧,可节省硝化第二段25%需氧量,由于剩余50% NH4+无需硝化,总共可节省62.5%需氧量;②无需有机碳源(COD);③可减少80%剩余污泥量。所以,ANAMMOX被认为是一种可持续污水处理技术。
自ANAMMOX应用工程在荷兰问世至今已过去了20多年,人们对ANAMMOX的研究似乎热度丝毫未减,尤其是在中国。特别是近年,短程反硝化(Partial denitrification, PD)耦合ANAMMOX的PD/A研究亦开始出现,与PN/A产生NO2-的方式完全不同。但PD/A似乎与ANAMMOX不消耗COD和少消耗O2的可持续初衷显得有些偏离。图1总结了硝化/反硝化、PN/A以及PD/A脱氮过程以及对O2和COD消耗,3种脱氮过程以及O2和COD消耗量一目了然。
就PN/A工程应用而言,中国目前已成为应用总数(应有百座之多)以及单体规模最大的国家。然而,中国自主研发的ANAMMOX工程应用反应器似乎寥寥无几,甚至有的已经半途而废。我国过热的深入研究与罕有的成功应用存在着巨大反差现象耐人寻味。为此,有必要认真总结分析其中原因,以阐明ANAMMOX适合的应用场景以及苛刻的控制技术,希望让其能走下“神坛”,回归其原本就是小众而非大众技术的属性。
特别声明:本篇文章转载于“北极星水处理网”,仅供分享交流不作商业用途,若有侵权,请联系我们删除。