医药化工废水脱氮处理求解?

如何评价「粉末活性炭膜生物反应器+大孔树脂脱氮」的污水处理厂尾水深度处理技术?
分析贴之污水处理工艺中的生物除磷法

在污水处理中作为水体富营养化祸首之一的磷,是污水处理工艺中关注的重点对象之一,而污水处理中的除磷法又分为化学除磷法和生物除磷法,今天就生物除磷法的基本知识作相关探讨。

生物处理法基本原理:
生物除磷法的基本原理就是利用聚磷菌(也称除磷菌、磷细菌)的细菌在污水处理的厌氧条件下能充分释放其细胞体内的聚合磷酸盐;而在好氧条件下,又能超过其生理需要从水中吸收磷,并将其转化为细胞体内的聚合磷酸盐,从而形成富含磷的生物污泥,通过沉淀从污水处理工艺系统中排出,实现污水处理工艺中的生物除磷。

影响因素:
污水处理工艺中生物除磷的影响因素包括:温度、PH值、厌氧池DO、厌氧池硝态氮、泥龄、RBCOD含量、糖原。
1、温度
温度对污水处理工艺的除磷效果影响不如对生物脱氮过程的影响那么明显,在一定温度范围内,温度变化不是十分大时,污水处理工艺中的生物除磷都能成功运行。试验表明,在污水处理时,生物除磷的温度宜大于10℃,因为聚磷菌在低温时生长速度会减慢。
2、PH值
当PH值在6.5一8.0时,聚磷微生物的含磷量和吸磷率保持稳定,当PH值低于6.5时,吸磷率急剧下降。PH值的突然降低,无论在污水处理工艺中好氧区还是厌氧区磷的浓度都会急剧上升,PH降低的幅度越大释放量越大,这说明PH降低引起的磷释放不是聚磷菌本身对PH变化的生理生化反应,而是一种纯化学的“酸溶”效应,而且PH下降引起的厌氧释放量越大,则好氧吸磷能力越低,这说明PH下降引起的释放是破坏性的,无效的。PH升高时则出现磷的轻微吸收。
3、溶解氧
每毫克分子氧可消耗易生物降解的COD3mg,致使聚磷生物的生长受到抑制,在污水处理时难以达到预计的除磷效果。在污水处理工艺中,厌氧区要保持较低的溶解氧值以更利于厌氧菌的发酵产酸,进而使聚磷菌更好的释磷,另外,较少的溶解氧更有利予减少易降解有机质的消耗,进而使聚磷菌合成更多的PHB。
而污水处理工艺中好氧区需要较多的溶解氧,以更利于聚磷菌分解储存的PHB类物质获得能量来吸收污水中的溶解性磷酸盐合成细胞聚磷。厌氧区的DO控制在0.3mg/l以下,好氧区DO控制在2mg/l以上,方可确保污水处理的厌氧释磷好氧吸磷的顺利进行。
4、厌氧池硝态氮
厌氧区硝态氮存在消耗有机基质而抑制PAO对磷的释放,从而影响污水处理中好氧条件下聚磷菌对磷的吸收。另一方面,污水处理时硝态氮的存在会被气单胞菌属利用作为电子受体进行反硝化,从而影响其以发酵中间产物作为电子受体进行发酵产酸,从而抑制PAO的释磷和摄磷能力及PHB的合成能力。每毫克硝酸盐氮可消耗易生物降解的COD8.5mg,致使厌氧释磷受到抑制,一般控制在1.5mg/l以下。
5、泥龄
污泥龄越小,除磷效果越佳。在污水处理中降低污泥龄,可增加剩余污泥的排放量及污水处理工艺系统中的除磷量,从而削减二沉池出水中磷的含量。但对于同时除磷脱氮的生物处理工艺而言,为了满足硝化和反硝化细菌的生长要求,污泥龄往往控制得较大,这是污水处理中除磷效果难以令人满意的原因。
6、RBCOD(易降解COD)
研究表明,当以乙酸、丙酸和甲酸等易降解碳源作为释磷基质时,磷的释放速率较大,其释放速率与基质的浓度无关,仅与活性污泥的浓度和微生物的组成有关,该类基质导致的磷的释放可用零级反应方程式表示。而其他类有机物要被聚磷菌利用,必须转化成此类小分子的易降解碳源,聚磷菌才能利用其代谢。
7、糖原
糖原是由多个葡萄糖组成的带分枝的大分子多糖,是胞内糖的贮存形式。如上图所示聚磷菌中糖原在好氧环境下形成,储存能量在厌氧环境下代谢形成为PHAs的合成的原料NADH并为聚磷菌代谢提供能量。所以在污水处理工艺中延迟曝气或者过氧化的情况下,除磷效果会很差,因为过量曝气会在好氧环境下消耗一部分聚磷菌体内的糖原,导致厌氧时形成PHAs的原料NADH的不足。

纵观以上所述,企业在污水处理时,针对工艺在处理菌上的选择,对化学除磷来说就显得尤为重要!由鸿淳环保科技公司研发的第三代污水处理专用菌,是由台湾微生物实验室团队潜心科研27年的科学沉淀成果,投入使用后快速回复系统稳定,抗冲击能力以及适应力强,产品具备超高的效率去除磷、氨氮、COD等污染物质,0化学成分,环保高效,使用后48小时见效,一周达标,系统稳定后无需长期投入,为企业节省更多污水处理上的经济投入!
生物除臭剂在日常生活中对气味污染的处理特点与应用范围


环境臭味成分及特性
臭味物质大多是气相污染物,主要由碳、氢、氧、氮、硫、卤素等元素构成。此外,属粒状污染物的金属燻烟及油烟多带异味,也可能含臭味物质。
就化学结构而言,臭味物质分子多因具剩余电子,而有刺激人类嗅觉的特性。因此不饱和烃、氮化物、硫化物、氯烃、含氧烃、植物精油等化合物,都具有特殊味道。其中硫化甲基、硫醇、甲基胺等三类具特异性臭味,为多数人厌恶,被环保部门列为恶臭污染物。
生物除臭剂中的微生物成分就是针对消除臭源中的这些臭气分子而研发的,生物除臭剂作用下所形成的生物分解层将抑制腐败菌的生长与繁殖,杜绝臭味气体的产生。后文将会再着重介绍。
臭味来源
臭味物质来源颇为广泛,就产生机制而言,分为生物分解、化学反应、物理作用等三类;就人类活动而言,则分成生活、农业、工业、商业等四类。
有机物的生物分解主要是藉微生物及其产生的酵素,在缺氧状况下,把有机物分解成有机酸、醇、酮及含还原态硫、氮等臭味物质。化学反应是工业臭味产生的主要机制,例如石油的加氢脱硫反应产生硫醇及硫化氢,加氢脱氮反应产生氨以及树脂热裂解产生醇、酮、胺等。物理作用主要是臭味物质的相转移,例如油漆溶剂的蒸发、下水道气味的逸出、油烟中挥发性有机物的排放等。
在生活方面,主要臭味源是生活污水及垃圾处理场,主要成分是还原态硫及氮化物、含氧碳氢化合物等,多数是有机物分解所产生。在农业方面,主要臭味源是养猪场、养鸡场、堆肥场等,主要成分与生活污水及垃圾相似,堆肥场尚含粪臭素等成分。在商业方面,干洗店、加油站等逸出的干洗油或汽柴油是主要臭味源,瓦斯分装及钢瓶检验场逸出的着臭剂,也是商业臭味源。另外,餐馆油烟与金属加工厂焊制的烟雾中含有脂肪酸、乙醛、不饱和烯烃等,也常引发臭味问题。

臭味控制原理及方法
选择控制的方法需考量臭排气流量、臭味成分、浓度、温度、去除效率等因素,臭气处理技术分为物理、化学、生物等三大类,一般可用单一技术或二种以上技术组合来完成单一臭气处理工作。常用的物理法是活性碳吸附或水洗,化学法是化学洗涤、焚化,生物法则包括生物洗涤、生物滴滤、生物除臭剂投放等。
活性碳吸附法
活性碳是最普遍的吸附剂,常使用在低浓度臭气成分的处理,可以有效除去烃、氯烃、氧烃(甲醛除外)等臭味。这个方法是把有机物吸附在多孔固体表面上而去除臭味。吸附操作温度宜维持在摄氏40度以下,但若废气含有大量水分,活性碳表面会因水汽凝结,而使污染物质吸附效果不佳。此外,灰尘、烟雾、杂质等也会影响吸附效果。
化学洗涤法
化学洗涤法是藉由气-液接触,使气相臭味成分转移至液相,并藉化学药剂与臭味成分的中和、氧化或其他反应去除臭味物质。典型的化学洗涤设备内部多放置大表面积的充填物,以增加气、液接触效果,吸收液从塔顶往下流,废气向上喷,臭气与吸收液经充分接触而反应去除。
可用化学洗涤法处理的臭味物质,包括有机硫化物、含氮化合物、有机酸及少数含氧碳氢化合物等。一般而言,硷、酸性臭味成分可分别使用酸、碱性溶液中和,不过这方法只能把臭味分子转成盐类以利于吸收,须再用其他方法把臭味成分破坏或回收。
生物除臭法
生物法是把气相中有机物传输至液相或固相生物膜,由微生物吸收并把它氧化分解为二氧化碳、水等最终产物。
由许多成功的经验知道,低分子量及结构简单的高水溶性有机物较具生物分解性,而结构复杂的有机物则较难分解。有机物方面,醇、醛、酮及部分较简单的芳香族类,已确认具生物分解性。无机物方面,硫化氢、氨、甲胺、硫醇、硫化甲基等也很容易被生物分解。多氯烃及多环芳香等的生物分解性则较低。
生物除臭剂投放
生物除臭剂的出现,意味着化学除臭剂正在一步步推出历史的舞台。化学除臭剂无论是气味掩盖法还是化学反应法,都不能彻底消除臭味的根源,因为化学除臭剂并没有杜绝臭源产生的根本。而生物除臭剂则采用有益微生物菌培育技术进行除臭,由于其使用便捷,时效长,见效快,价格实惠等一些列优势而备受青睐。生物除臭剂作用原理是利用多种培育出来的有益微生物菌附着在臭源表面,通过微生物代谢及其代谢产物形成生物分解层,在短时间内产生抗氧化物质,抑制腐败菌的生长与繁殖。作用完成后分解成水和二氧化碳,不对环境造成二次污染。说白了就是生物除臭剂能从源头扼杀臭味的产生。
近年来一种依靠先进微生物技术培育出来的高品质菌种,更是以其强劲的耐冲击、高适应能力而备受关注,投入使用的范围包括农贸市场、养殖畜牧、垃圾处理、公共卫生、湖泊沟渠、食品加工、餐饮酒店等,这种能应付各种复杂臭源环境的生物除臭剂,正是来自鸿淳环保科技有限公司的高效微生物除臭菌剂。

鸿淳环保科技有限公司生产的高效微生物除臭剂,有极强的耐候性;生物除臭剂可用于常年性的持续恶臭处理,也能从容面对暂时性的高浓度恶臭事件。对氨臭去除率达90%、硫化氢降解率达85%、臭气浓度降解率达94%。纯有益微生物制剂,对人畜误触也不会造成危害,安全、环保、高效,鸿淳环保公司的微生物除臭剂是你不可错过的一款消灭臭气污染的利器!
化学系,材料系,生物系的学生做实验时都发生过什么趣事?

关于城市生活污水处理过后剩余污泥中微生物方面的都有哪些研究?

风/太阳/核/水/地热/生物/潮汐能在我国民用发展前景排序及优劣对比?能源装置未来的趋势是巨型化+微型化吗
在一个阴暗的养鳖场,氧气不是很充足,应该投放什么菌类微生物,既可以吃掉鳖的排泄物,又可以清洁水质?

如果不及时更换水质,鳖的排泄物、残余的饵料等会造成鳖池内的氨、硫化氢等物质的积累,这些物质对于鱼鳖来说都是有毒害的。而氨态氮作为水中的营养素,会造成水耗氧加速,滋生类似气单胞菌等病菌感染鱼鳖。
要想解决题主所述的问题,我觉得关键在于去除水里的氨氮。利用微生物去除氨氮的过程主要包括硝化(nitration)和反硝化(denitrification)的作用。
硝化作用可以由亚硝化细菌、硝化细菌(一般为自养型好氧菌)将氨态氮转变为亚硝酸盐或者硝酸盐,使氮转化为硝基氮或亚硝基氮的形式。反硝化作用又称脱氮作用,是指在一些反硝化菌的作用下把NO2-或NO3-转化为为氮气、一氧化氮、二氧化氮等气体,同时又可以利用硝基氮或亚硝基氮完成自身生物量的积累。硝化作用可以去除水中的氨态氮,而反硝化作用可以解除硝化作用中的产物抑制作用,使反应持续进行。把两种作用的菌搭配起来的混合菌剂(或活性污泥),理论上是可以起到脱氮的作用的。关于菌剂的搭配及优化,也是环境微生物研究的一个方向。
题主所述,“一个阴暗的养鳖场,氧气不是很充足”,以我的理解,并非一个严格厌氧的环境。一般来说,是可以满足上述的硝化菌或反硝化菌的生长需要的。市面上有适应不同环境的脱氮混合菌剂可供选择。所以建议题主根据自家鳖池的理化性质(温度、PH、具体溶氧、其他?)咨询一些菌剂供应商,选择比较搭配的菌剂,投放到鳖池。同样如果需要,还可以同时投放脱硫菌剂以去除水体中的硫化氢等。
道听途说,暂时这么多。
这样计算TNK.总氮对不对?
近几年环境工程什么方向的人才需求更大?

谢邀。
先说一句,作为在行业里混了一段时间的人,我认为对这个行业的发展的中长期展望最多不能超过5年,超过5年的发展方向如果有人能说得出来那一定是YY出来的。
言归正传,个人认为最近五年内的热点会是:
高端的工业污水处理技术领域:高氮污水的高效生物脱氮技术、广谱的高级氧化技术和催化剂、各类高效的工业污水预处理技术、工业污水的超浓缩和零排放技术、超浓缩母液的分质结晶技术、反渗透浓水的达标排放技术、采油和采气反排液的处理技术;
土壤修复领域:工厂搬迁后的场地修复;
固废资源化和无害化领域:污泥干化和焚烧技术、城市垃圾的分类和无害化技术;
大气污染治理领域:高质量的脱硝催化剂、一体化脱硫脱硝技术;
循环经济领域:这就没法一一列举了。
另外一些号称前沿的概念技术也一定会成为热点,比如海绵城市,这种个人看来短时间内根本不可能实现的东西,学界就特别感兴趣,因为学界历来就只会搞搞这些不切实际的东西。
废水中总氮该怎么去除?

如今先进的污水处理技术有哪些?

一、连续循环曝气系统(CCAS) CCAS工艺简介 CCAS工艺,即连续循环曝气系统工艺(Continuous Cycle Aeration System),是一种连续进水式SBR曝气系统。这种工艺是在SBR(Sequencing Batch Reactor,序批式处理法)的基础上改进而成。SBR工艺早于1914年即研究开发成功,但由于人工操作管理太烦琐、监测手段落后及曝气器易堵塞等问题而难以在大型污水处理厂中推广应用。SBR工艺曾被普遍认为适用于小规模污水处理厂。进入60年代后,自动控制技术和监测技术有了飞速发展,新型不堵塞的微孔曝气器也研制成功,为广泛采用间歇式处理法创造了条件。1968年澳大利亚的新南威尔士大学与美国ABJ公司合作开发了“采用间歇反应器体系的连续进水,周期排水,延时曝气好氧活性污泥工艺”。1986年美国国家环保局正式承认CCAS工艺属于革新代用技术(I/A),成为目前最先进的电脑控制的生物除磷、脱氮处理工艺。 CCAS工艺对污水预处理要求不高,只设间隙15mm的机械格栅和沉砂池。生物处理核心是CCAS反应池,除磷、脱氮、降解有机物及悬浮物等功能均在该池内完成,出水可达标排放。 经预处理的污水连续不断地进入反应池前部的预反应池,在该区内污水中的大部分可溶性BOD被活性污泥微生物吸附,并一起从主、预反应区隔墙下部的孔眼以低流速(0.03-0.05m/min)进入反应区。在主反应区内依照“曝气(Aeration)、闲置(Idle)、沉淀(Settle)、排水(Decant)”程序周期运行,使污水在“好氧-缺氧”的反复中完成去碳、脱氮,和在“好氧-厌氧”的反复中完成除磷。各过程的历时和相应设备的运行均按事先编制,并可调整的程序,由计算机集中自控。 CCAS工艺的独特结构和运行模式使其在工艺上具有独特的优势: (1)曝气时,污水和污泥处于完全理想混合状态,保证了BOD、COD的去除率,去除率高达95%。 (2)“好氧-缺氧”及“好氧-厌氧”的反复运行模式强化了磷的吸收和硝化-反硝化作用,使氮、磷去除率达80%以上,保证了出水指标合格。 (3)沉淀时,整个CCAS反应池处于完全理想沉淀状态,使出水悬浮物(SS)极低,低的SS值也保证了磷的去除效果。 CCAS工艺的缺点是各池子同时间歇运行,人工控制几乎不可能,全赖电脑控制,对处理厂的管理人员素质要求很高,对设计、培训、安装、调试等工作要求较严格。
二、SPR高浊度污水处理技术 在天然淡水资源已被充分开发、自然灾害日益频繁暴发的今天,缺水已经对世界各国众多城市的经济和市民生活构成了十分严重的威胁,缺水危机已经是我们面临的现实,解决城市缺水问题的重要途径应该是将城市污水变为城市供水水源。城市污水就近可得,来源稳定,容易收集,是可靠且稳定的供水水源。城市污水经净化后回用主要可作为市政绿化、景观用水和工业用水。 城市污水再生回用工程包括污水收集系统、污水净化处理技术及其系统、出水输配系统、回用水应用技术和监测系统。其中污水净化再生技术及其系统是关键,污水净化处理的流程要简单可靠,投资和运行费用要为该城市经济实力所能承受,处理后出水的水质要满足回用的要求。 沿用了许多年的传统的“一级处理”及“二级处理”水处理工艺技术和设备已经难以适应当今的高浊度和高浓度污水的净化处理要求,处理后出水更不能满足城市对水回用的水质要求。沿着传统的工艺技术路线只能进一步附加传统的“三级处理”设备系统,既回避不了庞大复杂的传统二级生化处理系统,也回避不了投资和运行费用都十分昂贵的传统三级过滤吸附处理系统。这些恰恰是实现污水回用的忌讳之处。所以,环保市场十分迫切需要净化效率更高、处理后出水能满足现有环保标准并且能回用于城市,投资和运行费用又要为现有城市的经济实力所能接受的污水处理新技术和新设备。 最新发明的“SPR高浊度污水净化系统”(美国发明专利 )将污水的“一级处理”和“三级处理”程序合并设计在一个SPR污水净化器罐体内 ,在30分钟流程里快速完成 。它容许直接吸入悬浮物(浊度)高达500毫克/升至5000毫克/升的高浊度污水,处理后出水的悬浮物(浊度)低于3毫克/升(度);它容许直接吸入CODcr为200毫克/升至800毫克/升的高浓度有机污水,处理后出水CODcr可降为40毫克/升以下。只需用相当于常规的一 、二级污水处理厂的工程投资和低于常规二级处理的运行费用 ,就能够获得三级处理水平的效果 ,实现城市污水的再生和回用。 SPR污水处理系统首先采用化学方法使溶解状态的污染物从真溶液状态下析出,形成具有固相界面的胶粒或微小悬浮颗粒;选用高效而又经济的吸附剂将有机污染物、色度等从污水中分离出来;然后采用微观物理吸附法将污水中各种胶粒和悬浮颗粒凝聚成大块密实的絮体;再依靠旋流和过滤水力学等流体力学原理,在自行设计的SPR高浊度污水净化器内使絮体与水快速分离;清水经过罐体内自我形成的致密的悬浮泥层过滤之后,达到三级处理的水准,出水实现回用;污泥则在浓缩室内高度浓缩,定期靠压力排出,由于污泥含水率低,且脱水性能良好,可以直接送入机械脱水装置,经脱水之后的污泥饼亦可以用来制造人行道地砖,免除了二次污染。 最新发明的SPR污水净化技术以其流程简单可靠、投资和运行费用低、占地少、净化效果好的众多优势将为当今世界的城市污水的再利用开创一条新路。城市污水实现再利用之后,为城市提供了第二淡水水源,为城市的可持续发展提供了必不可少的条件,其经济效益和社会效益是不可估量的. SPR污水处理系统与众不同的技术特点 1.城市生活污水和处理药剂的混合主要是在泵前吸药管道 、污水泵 叶轮、蛇形反应管 和瓷球反应罐的组合作用下完成的 ,依照紊流速度 、混合时间 、和水力学结构数据设计 ,得以十分充分的混合 ,为取得最佳混凝净化效果和最大限度地节省药剂创造了前提条件 。这是过去常规的一级处理和二级处理之水工结构所做不到的 。 2.SPR系统处理城市污水时 ,采用五种以上污水处理药剂及其最佳配方组合使用 ,靠化学反应使污水中溶解状态的有机污染物 、重金属离子 和有害的盐类从水中析出 ,成为有固相界面的微小颗粒 (它包含有污水三级处理的作用)。其中还选用了一种吸附效果很好而价钱又很便宜的吸附剂,以吸附有机污染物和色度 。靠消毒剂在30分钟的流程内杀灭细菌和大肠杆菌 。靠混凝的物理化学吸附作用将悬浮物及各类杂质凝聚成大而且密实的絮团 。这样发挥各药剂的单独作用和它们之间的交联作用的用药方式是与常规的物理化学法不相同的 。而且SPR系统使用的组合药剂配方 ,只能在具有十分精细的水动力学参数设计的SPR污水净化器及其系统里才能充分发挥作用 ,在常规的水工系统里是无法使用的 。 3.SPR系统装置能够依照模拟试验得出的配方 ,借助大气压力和流量计 ,十分精确地投加混凝药剂和絮凝药剂 ,不致因加药过量而造成药剂残留在净化后的出水中,而且动力消耗很少 。 4.SPR污水净化器内部结构是完全按照混凝机理精确设计的 ,形成的涡旋流动和各部位恰当的水流速度 ,使得胶体颗粒之间有最多的碰撞次数 ,并且有凝聚吸附所需的最佳流速环境 。从而在极小的容积内获得了极充分的凝聚效果 。这也是常规水工装置无法比拟的 。 5.根据混凝形成的絮团实际状况 ,准确确定了SPR污水净化器内部的水动力学数据 ,使得在罐体中上部形成了一个有几十厘米厚的 、十分致密的悬浮泥层 。所有经过混凝的出水都必须通过此悬浮泥层的过滤 ,才能升流到罐体上部的清水汇集区 。它十分成功地起到了污水高级处理工艺中极为重要的过滤作用 。 这个致密的悬浮泥层是由污水中的污泥及混凝药剂形成的絮体本身组成的 。随着絮体由下向上运动 ,使泥层的下表层不断增加 、变厚 ;同时 ,随着过滤水力学原理形成的罐体的旁路流动,引导着悬浮泥层的上表层不断流入中心接泥桶 ,上表层不断减少 、变薄 。这样 ,悬浮泥层的厚度达到一个动态的平衡 。当混凝后的出水由下向上穿过此悬浮泥层时 ,此絮体滤层靠界面物理吸附和电化学特性及范德华力的作用 ,将悬浮胶体颗粒 、絮体 、细菌菌体等等杂质全部拦截在此悬浮泥层上 ,使出水水质达到三级处理的水平 。由于泥层是由絮体组成 ,致密度高 ,过滤效率远远高于常规的沙粒层过滤 ;由于是处于悬浮状态的絮体泥层作滤层 ,其过滤的水头(阻力)损失非常小 ,所以动力消耗远远低于常规的砂层过滤 、微孔过滤 、或反渗透膜过滤;又由于过滤泥层是净化过程中由污水中的污泥自动补充添加 ,又自动被引走 ,即过滤泥层自身在不断地更新 ,过滤泥层总是保持着稳定的厚度,而且总是保持着稳定的物理吸附和电化学吸附性能 ,因此能获得稳定的过滤效果 。而且完全免去了常规系统中必不可少的过滤层的反冲洗以及反冲洗带来的众多麻烦 。这种结构和原理与常规的三级污水处理的过滤装置是完全不同的 ,这里没有价格昂贵的反渗透膜过滤 、微孔过滤 、或活性炭过滤等装置 。所以 ,投资省 、动力消耗小 、运行费用低是SPR系统的必然优势。 6.SPR系统选用的絮凝剂 ,同时也是良好的污泥助滤剂 ,所以 ,系统最后排出的污泥浆 ,其脱水性能良好 ,可以不另外添加助滤剂 ,就直接泵入压滤机脱水 。泥饼可以制成人行道地砖再利用 ,不会带来二次污染的问题 。它没有传统的生化法产生的污泥含水率很高、脱水性能很差的致命弱点。
三、BIOLAK污水处理技术 l、百乐卡(BIOLA)工艺特点 百乐卡工艺是一种具有除磷脱氮功能的多级活性污泥污水处理系统。它是由最初采用天然土池作反应池而发展起来的污水处理系统。自1972年以来,经多年研究形成了采用土池结构、利用浮在水面的移动式曝气链、底部挂有微孔曝气头的一种具有一定特色的活性污泥处理系统。 由于采用土池而大大减少了建设投资,采用曝气链曝气系统进一步强化了氧的砖移效率,并减少运行费用,大大提高了处理效果。工艺设计简捷,不需复杂的管理,在适宜的条件下具有较大的经济和社会效益. 1.1低负荷活性污泥工艺 百乐卡工艺污泥回流量大,污泥浓度较高,生物量大,相对曝气时间较长,所以污泥负荷较低。龙田污水厂BOD5污泥负荷率为 0.05kgBOD/kgMLSS.d,污泥浓度为400Omg/L,污泥龄为29d,所以剩余污泥很少。 1.2 曝气池采用士池结构 根据国家环保局1992年《工业废水处理设施的调查与研究》,我国工业废水处理设施资金的54%用于土建工程设施,而只有36%用于设备,造成这 种投资分配格局的主要原因是工艺池大都采用价格昂贵的钢筋混凝土池。而龙田污水厂土建工程造价500万元,仅占总投资的20%。 大的钢筋混凝土池不仅价格昂贵,而且施工难度大。但对于许多种曝气工艺来讲,都不考虑采用土池,因为土池会造成地下水的侵蚀,同时也由于在土池基础上安装曝气头是十分困难的。 为了减少投资,百乐卡技术在研究土池结构的曝气池上做了大量工作,首先是使用HDPE防渗膜隔绝污水和地下水,其次是悬挂在浮管上的微孔曝气头避免了在池底池壁穿孔安装。 这种敷设HDPE防渗膜的土池不仅易于开挖、投资低廉,而且完全能满足污水处理池功能上的要求,并能因地制宜,极好地适应现场的地形,存某些特殊的地质条件下,如地震多发地区、土质疏松地区,其优点得到更充分的体现。敷设HDPE防渗膜的土池使用寿命远远超过钢筋混凝土池。 1.3 高效的曝气系统 百乐卡曝气系统的结构是,曝气头悬挂在浮链上,停留在水深4一5m处,气泡在其表面逸出时,直径约为50um。如此微小的气泡意味着氧气接触面积的增大和氧气传送效率的提高。同时,因为气泡向上运动的过程中,不断受到水流流动,浮链摆动等扰动,因此气泡并不是垂直向上的运动,而是斜向运动,这样延长了在水中的停留时间,同时也提高氧气传递效率。运行表明:百乐卡悬挂链的氧气传递率,远远高于一般的曝气工艺以及固定在底部的微孔曝气工艺。百乐卡曝气头悬挂在浮动链上,浮动链被松弛地固定在曝气池两侧,每条浮链可在池中的一定区域蛇形运动。在曝气链的运动过程中,自身的自然摆动就可以达到很好的混合效果,节省了混合所需的能耗。 采用百乐卡系统的曝气池中混合作用所需的能耗仅为1-5W/m3,而一般的传统曝气法中混合作用的能耗为l0一l5W/m3。由于百乐卡曝气头(BIOLAK)-Friox)特殊的结构,即使在很复杂的环境里曝气头也不至于阻塞,这意味着曝气装置可运行几年不维修,所需维护费用很少。 曝气系统与配套的高效鼓风机保证了很高的氧气传递效率,供氧能力为2-5kgO2/kW?h),而传统的污水处理厂该值为lkgO2/lkW?h)。鼓风机就设在池边,减少了鼓风机房和空气输送管道的费用。 1.4 简单而有效的污泥处理 百乐卡工艺的另一特点是回流污泥量大,其剩余污泥比传统工艺少许多。 在恒定的负荷条件下,百乐卡工艺的污泥在曝气池中的停留时间是传统工艺的几倍。由于污泥池中的污泥是完全稳定的,它不会再腐烂,即使长期存放也不会产生气味,这就是它同传统工艺相比污泥更容易处理的原因。而且污泥池完全可以做成土池结构,节省厂土建费用。 1.5 简单易行的维修 百乐卡系统没有水下固定部件,维修时不用排干池中的水,而用小船到维修地点将曝气链下的曝气头提起即可。实践表明,曝气头运行几年也不用任何维修,这主要是因为曝气管是由很细的纤维(直径约0?003mm)做成,并用聚合物充填,以达到防水和防脏物的目的。同时,曝气头有大约80%的自由空隙和20%的表面,和传统曝气头刚好相反。因此,微生物可生长的面积很小,并很容易被去除。当曝气头必须维修时,也不影响整个污水处理场的运行。该工艺的移动部件和易老化部件都很少。在选择设备和材料时,都采用了可靠耐用的材料。该工艺无需太多的自动化。它既不需要任何易损的探测器,也不需要任何复杂的控制系统,而操作这些控制系统还需要专门的技术和昂贵的配件。 1.6 二次曝气和安全池 为了保证负荷变化时用水质量,百乐卡工艺利用一个相对独立的池来进行二次曝气,以保证出水清洁,保证水中有足够的溶解氧。 1.7 二沉池 曝气池中产生的污泥在二沉池中被分离,并重新回到曝气池参与污水净化。有的百乐卡工艺的二沉池和曝气池合并到一起,进一步节省了土建费用和占地面积。二沉池沉淀污泥由漂浮式刮泥机、吸泥机排入污泥槽回流。 1.8 土地的利用 尽管百乐卡系统需要的曝气池体积比所谓密集型的大,但所需的总面积并不大,有时甚至更小,这主要有以下原因:a\不需初沉池;b\二沉池可以和曝气池合建在一起;c\池的设计和布置的自由度大,对地形的适应性强。四、“WT--FG”生物法技术简介 美国富美生物工程有限公司运用具有世界先进水平的“WT一FG”微生物技术成功地对中国的高浓度的工业污水和城市污水以及被污染的河流进行了卓有成效的治理,这是生物工程在污水治理中的实际运用。“WT--FG”生物技术,为中国环保事业走出一条投资省。见效快。运行费用低的路子作出了贡献。最近,该技术得到中国一批著名的生物专家的一致肯定,被中国政府列为“中国政府采购技术。” “WT--12”固体微生物具有高度浓缩和高度组合的特点,具备1200种微生物,可以针对不同的污水组合为不同的微生物菌剂,这种高效的微生物菌群,每克中含有10亿--60亿个微生物。利用它治理污水后,不会产生第二次污染,不会有新的活性污泥产生。“FG--12”专用助剂,它在水中具有吸收、蓄存。释放氧气的作用,因此“WT一FG”生物法完全抛弃了传统的机械曝气设备,采取了用电量极少的循环喷水装置和”FG一21”专用助剂来增加水中的溶解氧,这就大大节约了投资成本和运行费用。五、EWP高效污水净化器在造纸污水治理的应用 造纸污水水量大,浓度高,可生化性差。传统采用的生化法处理这类造纸污水,投资大、运行费高,去除率低。近年的治理情况表明,较为经济实用的是物化法[1],在一些国家,已把处理技术的重点转到物化凝聚法的研究和开发[2]。EWP高效污水净化器是只有一级物化处理工艺的设备系统,对利用废纸再生桨料造纸的污水进行治理,达到以污染物去除率COD在90%以上;BOD在70%能上能下;SS在95%以上,经处理污水还可回用到生产上。六、高效垂直流人工湿地系统水质净化技术介绍 工艺原理 人工湿地系统水质净化技术是一种生态工程方法,其基本原理是在一定的填料上种植特定的湿地植物,从而建立起一个人工湿地生态系统,当污水通过系统时,其中的污染物质和营养物质被系统吸收或分解,使水质得到净化。 方法特点 人工湿地系统具有建造成本较低、运行成本很低、出水水质非常好、操作简单等优点,同时如果选择合适的植物品种还有美化环境的作用。但另一方面具有占地面积较大的缺点。 适用范围 经过人工湿地系统系统处理后的出水水质可以达到地面水水质标准,因此它实际上是一种深度处理的方法。特别适用于饮用水源和景观用水保护,处理后的水可以直接排入饮用水源或景观用水的湖泊、水库或河流中。因此特别适合处理饮用水源或景观用水区附近的生活污水或直接对受污染水体的水进行处理,或者为这些水体提供清洁的水源补充。 基建与运行费用 基建费用与很多因素有关:地形特征、地层结构、选用的前处理方法、进水水质情况、出水水质要求、外观要求等等因素有关。因而根据情况的不同有很大差异,但比二级污水处理厂低很多。人工湿地系统运行费用特别低,如果仅以电费计,通常不会超过0.05元/吨/天(主要用于提高进水水位,如果水位不需提升则没有此项费用),另外需要工人进行简单的操作和维护管理。
造纸行业废水中的总氮如何去除?

对于总氮的去除,建议先分析现有工艺是否具备脱氮功能。若有,则分析运行参数,判断哪个环节出了问题,比如硝化阶段、反硝化阶段、回流比等;若没有,则考虑增加脱氮工艺,常用的生物脱氮,比如反硝化池、反硝化生物滤池等。
个人观点,仅供参考。
好氧池氨氮偏高,二沉池水浑浊,水质不清?

水质浑浊应该是一些有机酸类物质尚未分解完全,可以通过加混凝剂作三级沉淀处理,可以将浊度降低,至于氨氮,除了调整生物脱氮,提高降解率,还可以通过加相关药剂来处理,一般在末端处理,问题疑问可以到环保通与大家交流。
工业废水硝态氮如何去除?

污水处理厂a/o或者aao工艺如何降低总氮达到一级A标准。?

总氮包含有机氮、氨氮、亚硝氮和硝氮,在AO/A2O工艺中,氮的转化通常为:有机氮---氨氮---亚硝氮---硝氮---氮气,有机氮转化成氨氮主要发生在厌氧环节,氨氮转化成亚硝氮和硝氮通常主要是发生在硝化反应环节,而亚硝氮和硝氮转化成氮气则主要发生在反硝化环节。在AO/A2O工艺中,降低总氮是需要各个环节/工艺段相互协作的,首先要了解总氮是什么形态的氮,才能做出相对应的措施。菌种的活性和处理能力很大程度上决定了微生物脱氮的效果。
广西鸿淳环保科技有限公司的第三代污水处理菌种可以有效提高生化处理的处理效果,对COD、BOD、氨氮、总氮的去除效果非常显著。
环境科学现在的前沿领域是什么?

前沿越来越细,比较难说,除了真正研究的人其他人可能都不懂。
现在研究比较前沿且热点的话题包括但不限于以下内容:
环境科学和管理方面:
污染物源解析,建模,大气复合污染和反应机理
环境污染健康效应,室内空气污染与控制
新型污染物的识别、检测和迁移转化
环境经济学与政策分析
微生物群落结构、功能与环境关系,生物地化循环
环境工程方面:
严格来说工程很难有前沿,毕竟基本都经过基础的科学研究才进入工程应用。尤其是水处理基本都变成了各种技术组合的研究。
难降解有机污染物的去除:高级氧化,膜电极法。(都不算特别新,但研究还比较多
污水脱氮:短程硝化反硝化,厌氧氨氧化等(都有工程应用,但研究还在进行
固废、垃圾渗滤液方面,有的话题比较火,但我很不熟悉就不乱说了
新兴污染物:抗生素及其抗性基因,消毒副产物等等(这些算是真正还远没有解决的问题
还有很多东西比较前沿,但是因为交叉性很强,很少被划作环境科学领域的前沿,比如:
环境微生物学中的微生物地理学,利用微生物提高石油采油率等等。
技术 | 活性污泥处理新工艺

废水生物处理方式是以微生物作用为主题的新治理工艺,活性污泥法非常有代表性。本文从活性污泥处理工艺的特点、原理、优缺点以及多种不同活性污泥处理技术运用方式来进行全方位介绍。
废水生物处理借助环境工程和化学工程的手段和方法,以微生物作用为主体开发出了种种用于控制和治理水污染治理的新方法。代表:活性污泥法、生物膜法、厌氧处理法、生物脱氮、除磷等工艺技术。
所谓“好氧”:是指这类生物必须在有分子态氧气(O2)的存在下,才能进行正常的生理生化反应。
所谓“厌氧”:是能在无分子态氧存在的条件下,能进行正常的生理生化反应的生物。

有机污染物好氧微生物处理的一般途径
废水好氧生物处理过程中有机物的代谢及微生物的合成,可用下列基本图式来表示:

1914年在英国建成第一座活性污泥污水处理试验厂是目前城市污水处理的主要方法。

一、基础介绍
1.活性污泥法的特点
曝气池中污泥浓度一般控制在2—3g/L,废水浓度高时采用较高数值;
废水在曝气池中的停留时间(HRT)常采用4—8h,视废水中有机物浓度而定;
回流污泥量约为进水流量的25%—50%左右;
BOD和悬浮物去除率都很高,达到90%—95%左右。
2.作用原理
普通活性污泥法是依据废水的自净作用原理发展而来的。
3.不足之处
对水质变化的适应能力不强;
所供的氧不能充分利用,因为在曝气池前端废水水质浓度高、污泥负荷高、需氧量大,而后端则相反,但空气往往沿池长均匀分布,这就造成前端供氧量不足、后端供氧量过剩的情况。
因此,在处理同样水量时,同其他类型的活性污泥法相比,曝气池相对庞大、占地多、能耗费用高。
二、阶段曝气活性污泥法
阶段曝气法也称为多点进水活性污泥法,它是普通活性污泥法的一个简单的改进,可克服普通活性污泥法供氧同需氧不平衡的矛盾。

曝气池容积同普通活性污泥法比较可以缩小30%左右,但其出水差于普通活性污泥法。
三、渐减曝气法
克服普通活性污泥法曝气池中供氧、需氧不平衡另一个改进方法是将曝气池的供氧沿活性污泥推进方向逐渐减少,这即为渐减曝气法。

该工艺曝气池中有机物浓度随着向前推进不断降低、污泥需氧量也不断下降、曝气量相应减少。
四、吸附再生活性污泥法
吸附再生活性污泥法系根据废水净化的机理,污泥对有机污染物的初期高速吸附作用,将普通活性污泥法作相应改进发展而来。

特点
回流污泥量比普通活性污泥法多,回流比一般在50%—100%左右;
吸附池和再生池的总容积比普通活性污泥法曝气池小得多,空气用量并不增加,因此减少了占地和降低了造价;
具有较强的调节平衡能力,以适应进水负荷的变化。
缺点是去除率较普通活性污泥法低,尤其是对溶解性有机物较多的工业废水,处理效果不理想。
五、完全混合活性污泥法

完全混合活性污泥法的流程和普通活性污泥法相同,但废水和回流污泥进入曝气池时,立即与池内原先存在的混合液充分混合。

(1)采用扩散空气曝气器的完全混合活性污泥法工艺流程;
(2)采用机械曝气的完全混合活性污泥工艺流程;
(3)合建式圆形曝气沉淀池。
1.优点
微生物的代谢速率甚高;
废水水力停留时间往往较短,系统的负荷较高;
构筑物的占地较省。
2.缺点
导致出水水质较差;
较易发生丝状菌过量生长的污泥膨胀等运行间题。
六、序批式活性污泥法

序批式活性污泥法(SequencingBatchReactor,简称SBR)是国内外近年来新开发的一种活性污泥法,其工艺特点是将曝气池和沉淀池合而为一,生化反应虽分批进行,基本工作周期可由进水、反应、沉淀、排水和闲置五个阶段组成。
1.SBR特点
构造简单、节省投资:省去了二沉池、回流装置和调节池等设施,因此基建投资较低。
控制灵活,可满足各种处理要求:一个周期中各个阶段的运行时间、总停留时间、供气量等都可按照进水水质和出水要求而加以调节。
活性污泥性状好、污泥产率低:污泥结构紧密,沉降性能良好。此外在沉降期几乎是在静止状态下沉淀,因此污泥沉降时间短、效率高。
SBR的运行周期中有一闲量期、污泥处于内源呼吸阶段,因此污泥产率比较低。
2.CAST工艺

CAST系统的反应池构造:l.选择器;2.厌氧区;3.主反应区
作为SBR工艺的一种变型,在CAST系统中污水按一定的周期和阶段得到处理。每一循环由下列阶段组成并不断重复:充水/曝气、充水/沉淀、撇水、闲置。
特点
工艺简单,占地面积小,投资较低,没有二沉池,一般情况下不设调节池及初沉池;
曝气阶段生化反应推动力大:这有利于减少曝气池容积,降低工程投资;
沉淀效果好,可有效防止污泥丝状膨胀;
运行灵活,抗冲击能力强,当进行脱氮除磷时,可通过间断曝气控制反应池的溶解水平,提高脱氮除磷的效果;
CAST工艺可应用于大型、中型及小型污水处理工程,比SBR工艺适用范围更广泛;
运行稳定性好、基质去除率较高;
剩余污泥量小,性质稳定。
七、生物吸附氧化法(AB法)

特点
(1)AB法属于两段活性污泥法范畴,但通常不设初沉池,以便充分利用活性污泥的吸附作用;
(2)A级和B级的污泥回流是截然分开的,因而在两级中具有组成和功能均不相同的微生物种群;
(3)A级以极高负荷运行,其污泥负荷率从大于2.0kgBOD/(kgMLSS˙d),水力停留时间为0.5h左右,对不同进水水质,A级可选择以好氧或缺氧方式运行;
(4)B级则以低负荷运行,其污泥负荷率从小于0.3kgBOD/(kgMLSS˙d)。
八、延时曝气法

延时曝气,又称完全氧化活性污泥法,为长时间曝气的活性污泥法。采用低负荷方式运行,去除率高,污泥量少。
九、氧化沟

连续环式反应池通常简称为氧化沟,是活性污泥法的一种改型,属延时曝气的一种特殊形式。

特点
运行负荷低,处理深度大;
由于曝气装置只设置在氧化沟的局部区段,离曝气机不同距离处形成好氧、缺氧以及厌氧区段,故可具有反硝化脱氮的功能;
污泥沉降性能好,无臭味;
耐冲击负荷,适应性大;
污泥产量较少;
动力消耗较低,在采用转刷曝气时,噪声亦极小。
十、活性污泥法的其他几种运行方式
1.射流曝气工艺

利用射流曝气器充氧的活性污泥法,称为射流曝气活性污泥法。
根据空气补给的方式,又分为供气式射流曝气(由鼓风机提供压力气源)和自吸式射流曝气(利用射流器直接抽吸外界空气)。
前者效率较高,可达1.6—2.2kgO2/kWh(鼓风机3mm穿孔管中层曝气时,动力效率一般在1.0kgO2/kWh左右),但鼓风机会产生一定的噪声污染;后者动力效率较低,但也已达到1.1——2.0kgO2/kWh,同时可免去鼓风机的设置,彻底消除噪声的二次污染。
2.纯氧曝气工艺
其特点是以纯氧代替空气曝气,曝气池密闭,以提高供氧效率和有机物降解效率。
(1)优点
溶解氧饱和值较高,氧传递速率快,生物处理的速度得以提高,因此曝气时间短,仅为1.5—3.0h,污泥浓度约4000—8000mgMLSS/L,处理效果好。
(2)缺点
纯氧制备过程较复杂,易出故障,运行管理较麻烦;曝气池密封,又对结构的要求提高;
进水中混有的易挥发性的碳氢化合物容易在密闭的曝气池中积累,因此容易引起爆炸故曝气池必须考虑防爆措施;
生成的CO2也使气体中CO2分压上升,溶解于液体,并导致pH值下降,妨碍生物处理的正常运行,会影响处理效率。
在有现成纯氧供应的工业区内及场地异常紧张的情况下使用该法是合适的。
3.投料式活性污泥法
活性污泥法的各种工艺在运行过程中,最关键之处在于维持活性污泥的活性和凝聚性(沉淀性能)。
而活性污泥的凝聚性能极易受进水水质和外界因素的影响,从而导致二沉池出水飘泥等异常现象。
此时,在曝气池中投加粉末活性炭、混凝剂或其池化学药剂,往往会取得很好的效果,这就是所谓的“投料式”活性污泥法。其中以投加粉末活性炭为多,又称PACT法(粉末活性污泥法)。
技术 | 石油炼化废水处理技术

石油炼化废水是污染较严重和治理领域中处理难度较大的一类工业废水,其特征是高氨氮,污染物成份复杂、浓度高且多为生物难降解有毒有害有机物,水质、水量的波动幅度大。相比物理法和化学法,生物法具有去除污染物的种类多,效率高、抗冲击能力强、处理成本低等优点。

目前,针对可生化性差、可生化利用率低的石油炼化废水,石油炼化企业通常采用A2/O和A/O等常规生物脱氮工艺技术,但这些技术的氨氮去除负荷低、溶解氧消耗量大,而且由于硝化细菌世代周期长,上述单污泥系统运行方式使氨氮硝化易受复杂的高浓度有机物影响,运行不稳定。新型处理技术,如臭氧氧化技术,电化学和光化学法与氧化剂(如H2O2,O3和Cl2等)结合使用的技术尽管对于污水的处理和回用方面存在一定的优势,但由于能耗和处理费用较高,生产上尚未大量应用。
厌氧氨氧化是指在厌氧条件下微生物直接以NH4+为电子供体,以NO2-为电子受体的氧化还原反应,产物为N2。随着水处理技术的不断发展,厌氧氨氧化技术以其独特的技术优势受到国内外学者的关注。现阶段国内对于石油炼化废水的处理工艺研究主要集中在A/O生物法曝气生物滤池、臭氧一曝气生物滤池、三元微电解-Fenton试剂氧化法、臭氧一固定化生物活性炭滤池和悬浮填料移动床生物膜法等技术,但关于将厌氧氨氧化技术应用到石油炼化废水的处理和探究对其菌群影响的研究较少。

本实验利用已具有高效脱氮性能的厌氧氨氧化一反硝化细菌混培物建立生物脱氮反应器进行连续驯化实验,旨在探究石油炼化废水中COD和毒性物质对于脱氮处理应用过程中厌氧氨氧化一反硝化细菌混培物的影响。
1、实验部分
1.1实验装置
本实验装置由原水箱、上向流移动床厌氧氨氧化反应器、反应器进水泵三部分组成。原水箱总容积为20L。反应器材质为有机玻璃,形式为圆筒形,内径为42mm,高为400mm。反应器底部为厚度70mm的承托层,由粒径为2-20mm砂砾石组成。承托层以上装填80mm高的由厌氧氨氧化细菌和反硝化细菌为核心的细菌混培菌块构成有效生化反应区。反应器的总容积0.5L,有效反应容积0.11L,运行方式采用上向流。反应器外表面用黑塑料薄膜包裹,以防光线对细菌混培物的负面影响。反应器进水泵为蠕动泵,额定流量为0.2-2.0L/h。具体实验装置见图1。

1.2细菌来源
该反应器中所用厌氧氨氧化一反硝化细菌混培物取自已稳定运行6个月的厌氧氨氧化生物滤池反应器。生物滤池运行工况:进水温度33℃,进水基质浓度NH4+-N200mg/L(NO2--N与NH4+-N浓度比为1.0-1.3),TN去除负荷为13.5kg·(m3·d)-1,三氮化学计量比为NH4+-N去除量:NO2--N去除量:NO3--N产生量=1:1.34:0.20。
1.3实验原水
实验原水采用人工配制,由石油炼化废水和基础配制原水两部分组成,石油炼化废水取自天津市大港区某石化企业气浮池出水,基本组分为:NH4+-N浓度为80mg/L,pH为7.45,COD浓度为675mg/L;基础配制原水由脱除余氯的自来水、NH4Cl,NaNO2,KH2PO4、FeCl3·6H2O和NaHCO3等组成。
配制方法:不同阶段配制的实验原水成分为NH4+-N浓度278.28-229.93mg/L;NO2--N浓度201.51-319.55mg/L(NH4+-N和NO2--N的浓度据实验要求按需配制且比例控制在1:1.3左右);KH2PO4浓度10mg/L;NaHCO3浓度200mg/L;FeCl3·6H2O浓度4.0mg/L;COD由石油炼化废水带入,不需另行投加。原水的pH值采用2.0mol/L的HCl进行调节。原水配制过程中,为了补充微量元索,另投加体积分数0.17%的灭菌生活污水。原水成分及反应器运行条件见表1。

1.4实验方法
实验装置进水流量为0.4L/h,水温为(29士1)℃,通过控制石油炼化废水的添加比例并采用连续进水的方式,将NO2--N与NH4+-N浓度比控制在1.30左右。通过不同阶段石油炼化废水的添加,实现在不断增大难降解COD及毒性物质浓度的情况下,考察以厌氧氨氧化一反硝化细菌为核心的细菌混培物在脱氮生化过程中对COD和毒性物质的耐受能力。同时,以第I阶段中NH4+-N去除量和第II阶段中反硝化总脱氮量分别作为衡量厌氧氨氧化细菌和反硝化细菌活性指标和变化标准,探究石油炼化废水中COD及毒性物质对厌氧氨氧化一反硝化细菌混培物的影响。
另外,采用聚合酶链式反应(PCR)技术与倍比稀释法(MPN)相结合的MPN-PCR技术,对驯化前后两类主要细菌进行计数,探究驯化前后菌群的数目变化情况。
考虑到反应体系的水力停留时间为1.25h,而针对该反应体系,重点考察的是石油炼化废水对于细菌混培物的影响而非脱氮效率,所以实验中未控制最终出水指标。
1.5分析项目及检测方法
实验分析过程中涉及到的分析项目及检测方法见表2。

MPN-PCR技术将聚合酶链式反应技术与倍比稀释法相结合,选取不同稀释梯度的样品分别做4组不同稀释度的16个平行样进行PCR扩增,根据扩增产物特征碱基序列的电泳条带确定阳性反应,结果用来计算各样品的阳性反应数确定数量指标,然后从MPN统计计算表中查出相应的细菌近似数。
1.6数据处理及分析方法
当采用分光光度法检测COD时,由于实验原理中采用氧化剂和助催化剂,水样中的还原性物质会与氧化剂进行反应,所以测定时,NO2--N可被氧化剂氧化而使测定值比实际值偏高,因此水样实际COD应扣除由NO2--N所导致的COD误差。在水样COD浓度计算中,采用式(1)的数据处理方法以消除NO2--N的影响。

当采用MPN-PCR结果进行分析计算时,按照MPN法的计数原则,计算样品中的细菌数量:统计出现扩增条带的最后3个连续的稀释度(10^x、10^x+1和10^x+2),根据这3个稀释度平行样中条带的个数作为数量指标(abc),从“每毫升稀释液的细菌近似值”MPN表中查询对应的数值,采用式(2)的计算公式来计算细菌数量。
每克菌块中的细菌数量(个/g)=(条带数量指标对应的数值x最后3个稀释度中第1个稀释度的稀释倍数x提取的DNA总量)/菌块质量(2)
2、结果分析
2.1驯化过程对脱氮过程的影响
厌氧氨氧化反应可能是厌氧氨氧化细菌主要能量代谢途径,所以反应生化活性主要体现在NH4+-N去除浓度值的变化上。反硝化细菌在反硝化反应中可以利用多种代谢途径获取能量,所以反应生化活性主要体现在反硝化总脱氮量(NO2--N和NO3--N)上。根据实验方法中建立的标准,分析石油炼化废水中COD和毒性物质对于细菌混培物的影响。各阶段的厌氧氨氧化细菌和反硝化细菌的生化活性见表3。


2.1.1第I一II阶段
图2所示为第I一II阶段的脱氮影响。实验第I阶段为细菌混培物的适应期,所以采用与菌种原有环境相同(生物滤池运行工况)以缩短适应时间、保障处理效果。该阶段实验原水中没有添加石油炼化废水,从NH4+-N与NO2--N去除值可以看到厌氧氨氧化反应相对稳定,此时的TN去除负荷为11.978kg·(m3·d),而反硝化细菌总脱氮量相对较小,所以该阶段的细菌混培物中主要体现厌氧氨氧化细菌生化活性,而反硝化细菌生化活性存在但不明显。
第II阶段是驯化实验的初始阶段,石油炼化废水的添加比例较小,原水中COD和毒性物质浓度均较低。从图2中可以看到,该阶段中NH4+-N与NO2--N的平均去除值分别增加了1.643和7.052mg/L,反硝化平均总脱氮量却增加了3.56倍,同时以吸附作用和反硝化反应为主的去除方式可去除原水COD的61.1%左右,其中反硝化反应的去除比例占到45%左右。对于由厌氧氨氧化细菌和反硝化细菌组成的协同脱氮系统,添加的COD对反硝化反应产生了明显的促进作用,而对于厌氧氨氧化反应影响不大,说明该脱氮系统增强了对COD的抗冲击能力。
2.1.2第III一V阶段
从图3和4可以看出,第III一V阶段中伴随着石油炼化废水添加比例的增大,原水中COD和毒性物质浓度逐渐增加。进行分析时,以第I阶段中NH4+-N除量作为NH4+-N理论去除值,以第II阶段中反硝化总脱氮量作为反硝化理论总脱氮量,并以此分别作为衡量厌氧氨氧化细菌和反硝化细菌活性指标和变化标准。

对于厌氧氨氧化细菌,NH4+-N去除平均值出现降低并且变化量逐渐增大,与NH4+-N理论去除值之间的差距依次增大,并且3个阶段内的NH4+-N去除值均出现了波动,但稳定性却越来越好。说明该阶段中厌氧氨氧化细菌生化活性已经出现了明显的降低且降幅逐渐增大,也表现在整体TN去除负荷依次降低。由于实验出水中厌氧氨氧化反应的底物NH4+-N和NO2--N均有剩余,所以不断添加的石油炼化废水中COD和毒性物质对于厌氧氨氧化细菌产生了明显的不利影响,但随着驯化阶段的进行,细菌混培物对水质产生了一定的适应性;对于反硝化细菌,利用原水中COD进行反应后,细菌生化活性出现了明显增强且脱氮量逐渐增大,但相比反硝化理论总脱氮量的差距越来越大,第V阶段的差量约是第III阶段的2倍,推测由于石油炼化废水添加比例的不断增大,原水中的COD和毒性物质浓度均增大,而进水中可利用的NO2--N和NO3--N充足,所以COD浓度的增大一定程度上对于反硝化细菌产生了有利影响,但毒性物质浓度的增加对反硝化细菌产生了明显的负面作用。
另外,从表3中可以看出,第V阶段细菌混培物中厌氧氨氧化细菌生化活性达到最低点而反硝化细菌生化活性达到最高点,推测原因:一方面是该阶段毒性物质作用显著,厌氧氨氧化细菌的世代时间较长(约为11d),使得死亡率大于生长率,所以厌氧氨氧化活性出现了明显下降,并且2种细菌之间产生竞争和相互影响;另一方面由于高浓度COD对厌氧氨氧化细菌产生了明显冲击作用,反硝化细菌却可以利用部分COD保持正常的繁殖速率,使得生长率大于毒性物质造成的死亡率,所以反硝化细菌的数量增加对总体生化活性影响不明显,并且此时的混培体系中反硝化细菌相对厌氧氨氧化细菌逐渐成为了优势菌种。
2.1.3第VI阶段
第VI阶段全部由石油炼化废水组成,原水中高浓度的COD和毒性物质均未经过稀释。从图5和表3中看出NH4+-N平均去除值相比上一阶段增加,阶段内NH4+-N去除值出现波动,并且与NH4+-N理论去除值之间的差距逐渐增大;反硝化平均总脱氮量相比上一阶段减少,阶段内反硝化总脱氮量同样波动明显。说明该阶段中高浓度COD和毒性物质对于细菌混培物中的厌氧氨氧化细菌和反硝化细菌均产生了明显的不利影响,但由于长时间的运行可能出现了厌氧氨氧化细菌数量的增加或细菌适应性的加强,所以反硝化细菌生化活性可以表现在反硝化平均脱氮量上,脱氮量减少了25.6%,而厌氧氨氧化细菌生化活性则可以表现在氨氮的平均去除值上,增加了2.491mg/L。

2.2驯化过程对菌群的影响
采用分子生物学技术(MPN-PCR)对菌群在驯化阶段前后的变化进行分析,该方法最大的优点在于可以通过进行PCR体外快速扩增靶序列来取代细菌的分离培养,不但极大地缩短了实验时间,而且对样品中不可培养的细菌种类也可进行计数,从而使得结果更接近实际数量。
本实验首先在DNA提取方面尝试了改进的十六烷基三甲酸澳化钱(CTAB)/NaCI化学裂解法、改进的传统蛋白酶K一十二烷基磺酸钠(SDS)一氯仿异戊醇法(CPSCI法)和改进的溶菌酶-SDS-蛋白酶K细胞裂解法3种提取方法,采用紫外分光光度法对提取的DNA进行定量测定,分别测定260nm和280nm的吸光度值,提取DNA的完整性需要通过琼脂糖电泳进行检验。经琼脂糖电泳验证,3种方法提取的DNA长度均为23kb左右,条带轮廓清晰,亮度适宜,没有明显的弥散现象,表明提取的细菌基因组DNA质量较高,适用于后续实验。吸光度值测量使用UV-2550紫外分光光度计,测量结果如表4。由表4可以看出3种方法的A260/A280比值都大于1.8,蛋白质去除效率和DNA提取质量较高,3种方法均能够很好的去除蛋白质等有机杂质。虽然存在一定程度的RNA干扰,但并不影响后续PCR的操作。所有3种方法都不需要进行纯化,可以直接得到PCR扩增产物,说明这3种方法提取DNA是可行的。从提取的DNA浓度和纯度两方面,综合考虑最终确定蛋白酶K-SDS法作为提取细菌混培物DNA的方法。
细菌混培物中的厌氧氨氧化细菌和反硝化细菌扩增所使用的引物见表5,PCR扩增采用25μL体系,各组分:PCRbuffer2.5μL,MgCl22μL,dNTP0.5μL,上下游引物各1μL,Taq聚合酶0.2μL上海生工合成),模板1μL,无菌双蒸水补足至25μL。



PCR扩增采用降落PCR(TD-PCR)技术,采用的扩增程序为:1)厌氧氨氧化细菌:95℃预变性5min;95℃变性30s,60℃退火40s,72℃延伸40s,每个循环退火温度降低0.3℃,以上步骤循环25次;94℃变性30s,55℃退火30s,72℃延伸40s,以上步骤循环10次;72℃延伸10min;2)反硝化细菌:95℃预变性5min;95℃变性30s,60℃退火40s,72℃延伸1min,每个循环退火温度降低1.0℃,以上步骤循环10次;95℃变性30s,50℃退火40s,72℃延伸1min,以上步骤循环20次;72℃延伸10min。
经过一系列实验方法和条件的尝试、摸索和优化,得到适用于该细菌混培物最适的DNA提取、PCR扩增和MPN计数相结合体系。图6所示是细菌混培物中厌氧氨氧化和反硝化细菌在驯化实验前后计数的电泳图。
通过计算得到驯化前的厌氧氨氧化细菌和反硝化细菌数量为7.549x10^14和3.523x10^6个/g,驯化后的数量分别为8.212x10^8和4.693x10^16个/g。对比2种细菌在驯化前后的数量,可以看出对于厌氧氨氧化细菌来说,厌氧氨氧化反应可能是厌氧氨氧化细菌主要能量代谢途径,由于世代时间长(约为11d)、反硝化细菌数量的增加和毒性物质作用的原因,造成厌氧氨氧化细菌数量明显减少和生化活性降低。而对于反硝化细菌来说,由于反应可以利用多种代谢途径获取能量,所以基质对细菌的影响相对较小,并且利用石油炼化废水中的COD在细菌增殖上没有受到影响而使数量增加,但毒性物质对于反硝化细菌的生化活性产生了明显的抑制。

3、结论
1)厌氧氨氧化细菌和反硝化细菌的混培脱氮体系的脱氮生化活性并未与细菌数目的变化情况呈正相关性变化,说明COD和毒性物质产生了不同程度的影响。
2)厌氧氨氧化细菌比反硝化细菌对于石油炼化废水毒性的作用更敏感。由于厌氧氨氧化细菌本身世代周期长,所以初期毒性负效应作用较明显,但经驯化后厌氧氨氧化细菌对于高浓度COD和高毒性物质具有一定的适应性。在石油炼化废水处理中,通过进水负荷的控制,可以实现高于目前常用工艺技术的脱氮效率并实现节能。
3)混培脱氮体系在一定程度上可有效地抵抗石油炼化废水高浓度COD、高毒性物质对于厌氧氨氧化生理、生化脱氮过程的负面影响。反硝化细菌的存在对于厌氧氨氧化脱氮体系的稳定和出水总氮指标的降低,具有较好的促进和保障作用。
更多精彩内容请关注环创空间微信公众号:GEC-SPACE
技术 | 氨氮废水处理七大技术详解(下)


4、生物法
4.1传统生物脱氮技术
传统生物法是在各种微生物作用下,经过硝化、反硝化等一系列反应将废水中的氨氮转化为氮气,从而达到废水治理的目的。传统生物法去除氨氮需要经过两个阶段,第一阶段为硝化过程,在有氧条件下硝化菌将氨转化为亚硝酸盐和硝酸盐;第二阶段为反硝化过程,在无氧或低氧条件下,反硝化菌将污水中的硝酸盐和亚硝酸盐转化为氮气。传统生物法去除氨氮的机理如下:

工程应用中主要有A/0、A~2/O,UCT,氧化沟以及SBR工艺等,是生物脱氮工业中应用较为成熟的方法。影响生物脱氮技术的因素主要有H值、温度、溶解氧、有机碳源等。沈连峰等人采用物化一水解酸化一A/0(厌氧/好氧)组合法处理焦化废水,工程实践表明,该工艺运行稳定且处理效果好,出水水质达到GB8978-1996规定中的二级标准。
吉林化学工业集团公司污水处理厂采用A/0法处理综合废水,氨氮去除率达到68%。王震等人对二级缺氧一好氧生物脱氮技术在味精行业废水处理中的应用进行检测,结果表明,处理效果持续稳定,氨氮的去除率可达到94%以上,实现了味精废水氨氮达标排放要求。
统生物法处理氨氮废水具有效果稳定、操作简单、不产生二次污染、成本较低等优点。该法也存在一些弊端,如当废水中C/N比值较低时必须补充碳源,对温度要求相对严格,低温时效率低,占地面积大,需氧量大,有些有害物质如重金属离子等对微生物有压制作用,需在进行生物法之前去除,此外,废水中,氨氮浓度过高对硝化过程也产生抑制作用,所以在处理高浓度氨氮废水前应进行预处理,使氨氮废水浓度小于300mg/L。传统生物法适用于处理含有有机物的低浓度氨氮废水,如生活污水、化工废水等。
4.2新型生物脱氮技术
4.2.1同时硝化反硝化(SND)
当硝化与反硝化在同一个反应器中同事进行时,称为同时消化反硝化(SND)。废水中的溶解氧受扩散速度限制在微生物絮体或者生物膜上的微环境区域产生溶解氧梯度,使微生物絮体或生物膜的外表面溶解氧梯度,利于好氧硝化菌和氨化菌的生长繁殖,越深入絮体或膜内部,溶解氧浓度越低,产生缺氧区,反硝化菌占优势,从而形成同时消化反硝化过程。影响同时消化反硝化的因素有PH值、温度、碱度、有机碳源、溶解氧及污泥龄等。

杨青等人实验室小试证明了Carrousel氧化沟中有同时硝化/反硝化现象存在,在Carrousel氧化沟曝气叶轮之间的溶解氧浓度是逐渐降低的,且Carrousel氧化沟下层溶解氧低于上层。在沟道的各部分硝态氮的形成和消耗速度几乎相等,沟道中氨氮始终保持很低的浓度,这就表明硝化及反硝化反应在Carrousel氧化沟中同时发生。张晔等人研究生活污水的处理。认为CODCr越高,反硝化越完全,TN去除效果越好。溶解氧对同时硝化反硝化的影响较大,溶解氧控制在0.5-2mg/L时,总氮去除效果好。
同时硝化反硝化法节省反应器,缩短反应时间,能耗低,投资省,易保持pH值稳定。
4.2.2短程消化反硝化
短程硝化反硝化是在同一个反应器中,先在有氧的条件下,利用氨氧化细菌将氨氧化成亚硝酸盐,然后在缺氧的条件下,以有机物或外加碳源作电子供体,将亚硝酸盐直接进行反硝化生成氮气。短程硝化反硝化的影响因素有温度、游离氨、pH值、溶解氧等。

孙晓杰等人研究了温度对不含海水的城市生活污水和含30%海水的城市生活污水短程硝化的影响。试验结果表明:对于不含海水的城市生活污水,提高温度有利于实现短程硝化,生活污水中海水比例为30%时中温条件下可以较好地实现短程硝化。Delft工业大学开发了SHARON工艺,利用高温(大约30-4090)有利于亚硝酸菌增殖的特点,使硝酸菌失去竞争,同时通过控制污泥龄淘汰硝酸菌,使硝化反应处于亚硝化阶段。
根据亚硝酸菌与硝酸菌对氧亲和力的不同,Gent微生物生态实验室开发出OLAND工艺,通过控制溶解氧淘汰硝酸菌,来实现亚硝酸氮的积累。刘超翔等人采用短程硝化反硝化处理焦化废水的中试结果表明,进水COD,氨氮,TN和酚的浓度分别为1201.6,510.4,540.1和110.4mg/L时,出水COD,氨氮,TN和酚的平均浓度分别为197.1,14.2,181.5和0.4mg/L,相应的去除率分别为83.6%,97.2%、66.4%和99.6%。
短程硝化反硝化过程不经历硝酸盐阶段,节约生物脱氮所需碳源。对于低C/N比的氨氮废水具有一定的优势。短程硝化反硝化具有污泥量少,反应时间短,节约反应器体积等优点。但短程硝化反硝化要求稳定、持久的亚硝酸盐积累,因此如何有效抑制硝化菌的活性成为关键。
4.2.3厌氧氨氧化
厌氧氨氧化是在缺氧条件下,以亚硝态氮或硝态氮为电子受体,利用自养菌将氨氮直接氧化为氮气的过程。

陈曦等人研究了温度和PH值对厌氧氨氧化生物活性的影响,结果表明,该微生物的最佳反应温度为30℃,pH值为7.8。金仁村等人考察了厌氧氨氧化反应器处理高盐度、高浓度含氮废水的可行性。结果表明,高盐度显著抑制厌氧氨氧化活性,这种抑制具有可逆性。在30g.L-1(以NaC1计)盐度条件下,未驯化污泥的厌氧氨氧化活性比对照(无盐水质条件)低67.5%;驯化污泥的厌氧氨氧化活性比对照低45.1%。由高盐度环境转移到低盐度环境〔无盐水)时,驯化污泥的厌氧氨氧化活性可提高43.1%。但反应器长期运行于高盐度条件下,容易出现功能衰退。
与传统生物法相比,厌氧氨氧化无需外加碳源,需氧量低,无需试剂进行中和,污泥产量少,是较经济的生物脱氮技术。厌氧氨氧化的缺点是反应速度较慢,所需反应器容积较大,且碳源对厌氧氨氧化不利,对于解决可生化性差的氨氮废水具有现实意义。
5、膜分离法
膜分离法是利用膜的选择透过性对液体中的成分进行选择性分离,从而达到氨氮脱除的目的。包括反渗透、纳滤和电渗析等。影响膜分离法的因素有膜特性、压力或电压、pH值、温度以及氨氮浓度等。

黄海明等人根据稀土冶炼厂排放氨氮废水的水质情况,采用NH4C1和NaCI模拟废水进行了反渗透对比实验,发现在相同条件下反渗透对NaCI有较高去除率,而NHCl有较高的产水速率。氨氮废水经反渗透处理后NH4C1去除率为77.3%,可作为氨氮废水的预处理。反渗透技术可以节约能源,热稳定性较好,但耐氯性、抗污染性差。
张亚军等采用生化一纳滤膜分离工艺处理垃圾渗沥液,使85%-90%的透过液达标排放,仅0%-15%的浓缩污液和泥浆返回垃圾池。Ozturki等人对土耳其Odayeri垃圾渗滤液经纳滤膜处理,氨氮去除率约为72%。纳滤膜要求的压力比反渗透膜低,操作方便。
电渗析法是利用施加在阴阳膜对之间的电压去除水溶液中溶解的固体。氨氮废水中的氨离子及其它离子在电压的作用下,通过膜在含氨的浓水中富集,从而达到去除的目的。杨晓奕等采用电渗析法处理高浓度氨氮无机废水取得较好效果。对浓度为2000-3000mg/L氨氮废水,氨氮去除率可在85%以上,同时可获得8.9%的浓氨水。电渗析法运行过程中消耗的电量与废水中氨氮的量成正比。电渗析法处理废水不受pH值、温度、压力限制,操作简便。
膜分离法的优点是氨氮回收率高,操作简便,处理效果稳定,无二次污染等。但在处理高浓度氨氮废水时,所使用的薄膜易结垢堵塞,再生、反洗频繁,增加处理成本,故该法较适用于经过预处理的或中低浓度的氨氮废水。
生物膜(MBR)是将生物处理与膜分离有机结合的一种污水处理技术。徐濒龙等设计了以生物膜为核心的厌氧/兼氧/好氧组合工艺,并进行了中试研究。在稳定运行阶段总水力停留时间平均为84h,硝化池出水氨氮平均为lmg/L,去除率为99.5%,达到了排人管网的标准。生物膜法具有脱氮效率高,占地面积小,污泥量少,出水可直接循环使用等生物处理与膜分离的共同优点。运用生物膜法要注意保持膜有较大的通量和防止膜的渗漏。
6、离子交换法
离子交换法是通过对氨离子具有很强选择吸附作用的材料去除废水中氨氮的方法。常用的吸附材料有活性炭、沸石、蒙脱石及交换树脂等。沸石是一种三维空间结构的硅铝酸盐,有规则的孔道结构和空穴,其中斜发沸石对氨离子有强的选择吸附能力,且价格低,因此工程上常用斜发沸石作为氨氮废水的吸附材料。影响斜发沸石处理效果的因素有粒径、进水氨氮浓度、接触时间、pH值等。

金相灿等研究了4种填料(天然沸石、陶粒、蛙石和土壤)对氨氮的吸附行为,结果表明沸石对氨氮的吸附效果明显,蛙石次之,土壤与陶粒效果较差。沸石去除氨氮的途径以离子交换作用为主,物理吸附作用很小,陶粒、土壤和蛙石3种填料的离子交换作用和物理吸附作用的效果相当。4种填料的吸附量在温度为15-35℃内均随温度的升高而减小,在pH值为3-9范围内随pH值升高而增大,振荡6h均达到吸附平衡。蒋建国等探讨了沸石吸附法去除垃圾渗滤液中氨氮可行性。
实验研究结果表明,每克沸石具有吸附15.5mg氨氮的极限潜力,当沸石粒径为30-16目时,氨氮去除率达到了78.5%,且在吸附时间、投加量及沸石粒径相同的情况下,进水氨氮浓度越大,吸附速率越大,沸石作为吸附剂去除渗滤液中的氨氮是可行的。同时指出沸石对氨氮的吸附速度较低,在实际运行中沸石一般很难达到饱和吸附量。张曦等研究了生物沸石床对模拟村镇生活污水中各形态氮及COD等污染物的去除效果。结果表明,生物沸石床对氨氮去除效果明显且稳定,去除率大于95%,对硝态氮的去除则受水力停留时间的影响较大。
离子交换法具有投资小、工艺简单、操作方便、对毒物和温度不敏感、沸石经再生可重复利用等优点。但处理高浓度氨氮废水时,再生频繁,给操作带来不便,因此,需要与其他治理氨氮的方法联合应用,或者用于治理低浓度氨氮废水。
7、土壤灌溉
土壤灌溉是将低浓度氨氮废水直接作为肥料使用的方法。对于有些含有病菌、重金属、有机及无机等有害物质的氨氮废水需经预处理将其去除后再进行灌溉。土壤灌溉要求氨氮浓度一般为几十毫克每升。

工业循环水处理总氮高

概述:本文讲述工业循环水的排污特点,工业循环水由于浓缩导致总氮高。但是因为加入大量的阻垢剂和杀菌灭藻剂,总氮比较难被微生物降解,湛清环保设计的HDN脱氮设备可以快速脱氮,使循环水的总氮达到10mg/L以下。
一、工业循环水为什么总氮高
工业循环利用的冷却水称为循环水,冷却水在冷却生产设备或产品的过程中,水温升高,虽然其物理性状变化不大,但长期循环使用后,水中某些盐分浓缩、尘土积累、微生物滋长,造成设备、管道内垢物沉积或对金属设备管道腐蚀,因此需要定期排污,这类排出的水被称为循环冷却排污水。
由于工业循环水所使用的水大部分是地下水,而地下水中富集了大量的硝酸盐,因此经过浓缩以后,水中的硝酸盐大量积累,导致循环水总氮高。以下图为例,各地区地下水中的硝酸盐浓度在10mg/L左右,经过浓缩以后,总氮浓度高达30-40mg/L。

二、工业循环水总氮难以处理的原因
根据工业循环水的特点,主要是以下两个层面造成循环水总氮难以处理。
第一,工业循环水加入了大量的阻垢剂和杀菌灭藻剂。防止结垢问题,一般在循环体系中会加入大量的阻垢剂,而这类物质会影响微生物脱氮的效果。
第二,工业循环水一般以地下水作为原水,除了总氮以外,其他指标都比较低,COD在10-30mg/L之间变化,原先不作为废水进行处理,直排水体。大部分公司现有的废水处理体系不能够消化循环水的总氮。因此需要新建污水站,采用厌氧-好氧-二沉池的工艺进行脱氮处理,占地面积大,脱氮效率低。

三、湛清HDN工艺处理循环水总氮
苏州湛清环保经过三年对生化法处理工业废水的深入研究,提出一项稳定实现总氮达标的HDN反硝化技术,从结构上解决了污泥回流的复杂性,并根据水力流态特性加速了氮气的排放,使整体结构的反应死区几近乎无,并特地引进荷兰本土反硝化菌,用三年时间加以驯养并择优筛选富集,最终培养出一类可适应工业废水高毒性、高浓性特质的反硝化菌,使反硝化速率大大提升,并在短时间内可实现迅速富集;另外,通过对数百种材质填料试用分析后,通过改性并与培养出的反硝化菌相互匹配,研发出一种具有更加丰富微观孔道且反硝化菌更易附着富集的专属定制填料,实现了总氮的快速、高效提标。
脱氮效率高——正常运行脱氮负荷1kg N/m³·d,出水总氮稳定达标
占地面积小——10t/h的处理量,降低20mg/L总氮,占地面积仅6㎡
易操作维护——全自动控制,无需更换填料,反冲洗水量少、频率低
污泥产量少——反冲洗排出的少量微生物回流至生化池继续分解
运行成本低——去除20 mg/L的总氮,吨水成本小于1元

四、案例介绍
山东某化工厂产生800吨/天的工业循环冷却水,其中循环水总氮浓度在30-50mg/L之间波动,原先考虑用厌氧-好氧-沉淀的工艺进行处理,占地面积大,湛清环保经过小试-中试以后,验证了技术可行性,经过设计,上了两套总氮处理设备进行处理循环水总氮,目前出水总氮稳定在10mg/L以下,达到外排标准。

暑期实践活动 参观污水处理厂

为了更好的了解污水处理的运行和处理方式,我们专门请了老师来为我们专门讲解。
生物池,此生物池的处理方法是活性污泥法,利用厌氧区,聚磷菌处于优势菌种进行除磷。在缺氧区,利用反硝化作用进行脱氮。而且生物池中好氧区是底部连通型的,底部有曝气盘。规格6m深,面积3万8平米每个。其中生物池中的活性污泥停留的时间是11—12小时。
然后是二沉池,直径38m ,深4m,运用四周进,四周出。上部有刮泥机,进行泥水分离。
随后重点讲述UCT工艺。UCT工艺与传统的A/0工艺类似,反应池由厌氧、缺氧、好氧三部分组成,其基本原理是原污水和含磷回流污泥进入厌氧反应池进行磷的释放和吸收低分子量有机物;在缺氧池,以进水中的有机物为碳源,利用混合液回流带入的硝酸盐进行反硝化脱氮;然后从缺氧池进入曝气池,进一步去除BOD, 进行硝化反应和磷的过量吸收;在沉淀池中进行泥水分离,富磷污泥通过排剩余污泥把磷排出处理系统,达到生物除磷的目的。
厌氧池:厌氧发酵菌将污水中的可生物降解的大分子有机物转化为VFA 这类分子量较低的发酵中间产物。聚磷菌利用其合成自身的细胞质,大量繁殖。
缺氧池:反硝化细菌利用好氧区中回流液中的硝酸盐以及污水中的有机基质进行反硝化,达到同时除磷脱氮的效果。
好氧池:聚磷菌在利用污水中残留的有机基质的同时,主要通过分解其体内贮存的PHB所放出的能量维持其生长,同时过量摄取环境中的溶解态磷。硝化菌将污水中的氨氮转化成为硝酸盐。
UCT工艺与A2/0工艺不同之处在于沉淀池污泥回流到缺氧池而、不是回流到厌氧池,这样可以防止由于硝酸盐氮进入厌氧池,破坏厌氧池的厌氧状态而影响系统的除磷率。增加了从缺氧池到厌氧池的混合液回流,由缺氧池向厌氧池回流的混合液中含有较多的溶解性BOD,而硝酸盐很少,为厌氧段内所进行的有机物水解反应提供了最优的条件。在实际运行过程中,当进水中总凯氏氮TKN与COD的比值高时,需要降低混合液的回流比以防止N03-进入厌氧池。但是如果回流比太小,会增加缺氧反应池的实际停留时间,而实验观测证明,如果缺氧反应池的实际停留时间超过1h,在某些单元中污泥的沉降性能会恶化
最后我们收集了生物二沉池中的水质来进入陈三桥污水处理厂内的实验室进行测量,水质处理后的水质符合:SS指标20、总N指标10、BOD指标10、氨氮指标5.也收集了一些活性污泥,进行简单研究。
小结:通过这次社会实践,我们对污水处理
过程有了进一步的认识,使我在学生阶段能够程度深入学习活性污泥法的处理工艺. 有利于把课本知识与实践相结合,为以后从事环保工作打下良好的基础。活性污泥法是目前处理城市和工业污水普遍采用的好氧生化处理技术.其工艺流程较为简单,处理成本低,而处理效果好,BOD/COD去除率高,因而能得到广泛的青睐。
氨氮废水处理方法

氨氮废水处理方法
前言:氨氮废水处理方法是什么?这是很多人的疑惑,其实也不难的,下面为就大家简单讲讲最有效,最快速解决氨氮废水方法~

污水中氨氮形式:废水中氨氮的构成主要有两大类,一种是氨水形成的氨氮,一种是无机氨形成的氨氮,主要是硫酸铵,氯化铵等等。共分四种:有机氮.氨氮.亚硝酸氮(NO2-)和硝酸氮(NO3-)。而自然地表水体和地下水体中主要以硝酸盐氮(NO3-)为主。高氨氮废水的一般的形成是由于氨水和无机氨共同存在所造成的,一般上ph在中性以上的废水氨氮的主要来源是无机氨和氨水共同的作用,ph在酸性的条件下废水中的氨氮主要由于无机氨所导致。
生态环境:氨氮对水生物起危害作用的主要是游离氨,其毒性比铵盐大几十倍,并随碱性的增强而增大。氨氮毒性与池水的pH值及水温有密切关系,一般情况,pH值及水温愈高,毒性愈强,对鱼的危害类似于亚硝酸盐。

生物处理法:就是我们常说的生物脱氮,主要包括氨化、硝化、反硝化最终以氮气从水中脱出。生物脱氮现在又很多成熟的工艺,在水处理中非常常见。
化学法除氨氮:是根据废水中污染物的性质,必要时投加某种化工原料(氨氮去除剂SN-1),在一定的工艺条件下(温度、催化剂、pH值、压力、搅拌条件、反应时间、配料比例等等)进行化学反应,使废水中污染物生成溶解度很小的沉淀物或聚合物,或者生成不溶于水的气体产物,从而使废水净化,或者达到一定的去除率。选择合适的化工原料也很重要。
氨氮废水处理方法最快速的方法是投加氨氮去除剂SN-1,无需改变原有工艺流程,直接投加,去除剂96%以上。

——责任编辑:希洁化学
咨询工程师:189-2617-3730(微信同步)
焦化废水处理工艺

焦化废水处理一直是国内外污水处理领域的一大难题。废水中污染物组成复杂,含有挥发酚、多环芳烃和氧硫氮等杂环化合物,属较难生化降解的高浓度有机工业废水。
目前,国内80%的焦化厂普遍采用的是以传统生物脱氮处理为核心的焦化废水工艺流程。分为预处理、生化处理以及深度处理。预处理主要采用物理化学方法,如除油、蒸氨、萃取脱酚等;生化处理工艺主要为A/O、A2/O等工艺;深度处理主要工艺有活性炭吸附法、活性炭-生物膜法及氧化塘法。
下面,江苏帕斯玛的小编将为您讲解一下我们常用的几种处理方法:
物理处理法
1、吸附法
吸附法是利用多孔性吸附剂吸附污水中的一种或几种溶质,使污水得到净化。活性炭是最常用的一种吸附剂,活性炭吸附法适用于污水的深度处理。
2、混凝和絮凝沉淀法
混凝法是向污水中加入混凝剂并使之水解产生水合配离子及氢氧化物胶体,中和污水中某些物质表面所带的电荷,使这些带电物质发生凝集,是用来处理污水中自然沉淀法难以沉淀去除的细小悬浮物及胶体微粒,以降低污水的浊度和色度,但对可溶性有机物无效,常用于焦化污水的深度处理。 该法处理费用低,既可以间歇使用也可以连续使用。
3、Fenton试剂法
Fenton试剂是由H2O2和Fe2+混合得到的一种强氧化剂,由于其能产生氧化能力很强的61OH自由基,在处理难生物降解或一般化学氧化难以奏效的有机污水时,具有反应迅速,温度和压力等反应条件缓和且无二次污染等优点。因此,近30年来越来越受到国内外环保工作者的广泛重视。
生化处理法
生化处理法是一种利用微生物氧化分解污水中有机物的方法,常作为焦化污水处理系统中的二级处理。
1、A/O与A2/O法
目前国内主要采用A/O与A2/O工艺及其变异型脱氮工艺进行焦化污水的脱氮处理,脱氮效果较好。Min Zhang等对A-A-O工艺与A-O工艺进行了比较,实验表明:A-A-O工艺在NH3-N去除和反硝化方面均优于A-O工艺,特别是反硝化率方面A-A-O工艺是A-O工艺的两倍。目前宝钢一、二期焦化污水就是对原A-O工艺优化后,采用了A-A-O工艺。目前系统运行稳定,但由于条件控制复杂,投资费用高,为保证处理效果,运行中污泥及污水回流量较大,增加了动力消耗,且内循环液带入大量溶解氧,使反硝化池内难于保持理想的缺氧状态,影响反硝化过程降低了脱氮效率。
2、SBR法
SBR池兼均化、沉淀、生物降解及终沉等功能于一体。国内外对SBR法研究的结果表明此法工艺简单、运行费用低、运行管理简单,同时不必设调节池,多数情况下可省去初沉池。SBR反应池生化反应能力强,处理效果好,能有效地防止污泥膨胀,耐冲击负荷能力强,工作稳定性强。用它来处理焦化污水,NH3-N的去除率达60%,传统SBR法对焦化污水降解效率不高。
3、氧化沟技术
随着氧化沟技术的发展,出现了一系列脱氮技术与氧化沟技术相结合的污水处理工艺流程。按照运行方式,氧化沟可以分为连续工作式、交替工作式和半交替工作式。连续工作式氧化沟,如帕斯韦尔氧化沟、卡鲁塞尔氧化沟。奥贝尔氧化沟在我国应用比较多,这些氧化沟通过设置适当的缺氧段、好氧段都能取得较好的脱氮效果。
化学处理法
1、催化湿式氧化技术
催化温式氧化技术是在高温、高压条件下,在催化剂作用下,用空气中的氧将溶于水或在水中悬浮的有机物氧化,最终转化为无害物质N2和CO2排放。该技术的研究始于20世纪70 年代,是在Zim-merman的湿式氧化技术的基础上发展起来的。湿式催化氧化法具有适用范围广、氧化速度快、处理效率高、二次污染低、可回收能量和有用物料等优点。但是,由于其催化剂价格昂贵,且在高温高压条件下运行,对工艺设备要求严格,国内很少将该法用于污水处理。
2、臭氧氧化法
臭氧是一种强氧化剂,能与污水中大多数有机物,微生物迅速反应,同时还可起到脱色、除臭、杀菌的作用。该法不会造成二次污染,操作管理简单方便。但是,这种方法也存在投资高、电耗大、处理成本高的缺点。同时若操作不当,臭氧会对周围生物造成危害。因此,目前臭氧氧化法还主要应用于污水的深度处理。在美国已开始应用臭氧氧化法处理焦化废水。
3、光催化氧化法
光催化氧化法是由光能引起电子和空隙之间的反应,产生具有较强反应活性的电子(空穴对),这些电子(空穴对)迁移到颗粒表面,便可以参与和加速氧化还原反应的进行。光催化氧化法对水中酚类物质及其他有机物都有较高的去除率。在最佳光催化条件下,控制污水流量为3600mL/h,就可以使出水COD值由472mg/L降至100mg/L以下,且检测不出多环芳烃。
火电厂脱硫废水零排放

水资源危机是当今世界面临的重要问题,水资源的严重匮乏已经成为制约我国国民经济发展的一个重要因素。燃煤火电厂是我国工业用水的大户,其用水量和排水量十分巨大,在工业用水中约40%用于燃煤火电厂,燃煤火电厂每年排水约占全国工业企业排放量的10%。随着生态文明建设号角的吹响,“废水零排放”在火电企业越来越多地被提及,火电厂废水零排放要求利用先进的水处理技术,实施废水处理后回用,真正实现火电厂废水零排放,这将是发电企业节约水资源、降低环境污染、实现可持续发展的重要课题。
零排放并不是说不排放水,而是不将有害物质通过水体排放到自然环境中,电厂生产使用的水资源最终以蒸汽的形式排放到环境中,或者在电厂内部水循环系统中留存,这样大大提高了水资源利用率,同时避免自然环境遭到污染水体的污染,保证居民用水安全。从可持续发展的角度看,目前以及今后的水资源将会一直处于相对匮乏的状态,污水零排放是工业发展的必然趋势。零排放对水处理技术的要求非常之高,需要很高的技术投入,因此其资金投入与严格的管理制度与监管制度是必不可少的。
江苏帕斯玛环境科技有限公司研究的脱硫废水的零排放处理工艺是:常规处理出水入EDR浓、淡水分离,淡水入调节池与循环系统排水、生活污水、经预处理的工业废水、初期雨水等混合,入AO生化池生物脱氮,生物处理出水采用“UF+RO”的中水回用工艺,RO淡水入锅炉补给水处理系统进水端,RO浓水回流至EDR进水端,EDR浓水入蒸发析盐设备。
在现代社会生产生活中,合理运用燃煤电厂脱硫废水零排放处理工艺,能够有效降低污水排放量,提高水资源利用率,全面提高企业经济效益和环境效益。当前社会发展形势下对环境保护的要求不断提高,燃煤电厂脱硫废水零排放处理工艺的应用势在必行,为建设清洁环保型燃煤电厂提供可靠的技术支持,推进整个社会的稳定持续发展。
公司网址:脱硫废水处理系统
最新的水处理的方法有哪些呢?

- 前处理和生物处理基本上都成熟了,AAO,好氧的活性污泥,SBR(ICEAS,CAST,DAT-IAT,UNITANK),MBR,生物膜,生物滤池,接触氧化,流化床,厌氧的从AF,UASB,AFB,ABR到EGSB和IC。
- 脱氮里面有同步硝化反硝化SND,短程硝化SHARON,OLAND,厌氧氨氧化ANAMMOX,好氧反硝化。
- 生物处理里面也有加入powdered activated carbon(PAC)去除一些微生物难降解有机物(PACT工艺)。
- 高级处理主要是活性炭及其他低成本吸附剂吸附,高级氧化(双氧水,UV,臭氧,fenton),高级氧化中有一些研究关于高铁酸盐(六价铁盐)的,有氧化消毒混凝吸附四种作用)。
- 反渗透膜RO,正渗透FO(这种方法个人觉得可行性不高,关键是高浓度的液体用什么以及如何处理)。
- 至于其他很多文献中改进的方法,基本都只有实验室的pilot实验,没有大规模的,能否应用是个问题。另外有兴趣的话推荐了解一下新加坡的Newater工艺。
焦化废水处理中影响去除氰化物的因素有哪些?

经环'保'技术分析建议楼主增设一个预处理,投加适量的双氧水,通过双氧水的强氧化性将氰根氧化成氨,再利用微生物脱氮的功能去除。
不忘师恩:华清朗意环保带你追溯污水处理市场来时的路

想知道污水处理市场的发展起源吗?想了解更多有关污水处理设备的最新信息吗?在这个特殊的教师节日子里,相信你已经被各种各样“祝师福”刷屏。作为一个敬业的水处理公众号,当然也不忘带你领略一番污水处理市场来时的路,追溯其师出何处?

早期的处理方式采用石灰、明矾等进行沉淀。明代晚期,我国已有污水净化装置。但由于当时需求性不强,我国生活污水仍以农业灌溉为主。

二级处理阶段,有机物的处理工艺主要有生物膜法和活性污泥法,但随着在实际生产中的广泛应用和技术上的不断革新改进,20世纪40-60年代,活性污泥法逐渐取代了生物膜法,成为污水处理的主流工艺。并且又在活性污泥法中衍生了出了一系列的脱氮除磷工艺。
这些脱氮除磷工艺包括:除磷、脱氮、A2O、氧化沟、SBR、CASS、MSBR和新型脱氮除磷技术(ANAMMOX-SHARON 组合工艺)。

然而在第三级处理阶段时,随着生活质量的提高,污水处理厂的侧重点不再是核算污染物的排放量,而是如何改善水质。膜技术开始显现其独特优势。生物膜技术又重新被重视起来,目前,应用较多的膜处理技术主要有微滤、超滤、反渗透和膜生物反应器(MBR)技术。
回顾整个历史过程,城市生活污水处理的足迹随着人类健康的需求、水环境质量的变化、污水的处理程度在一级级的加深,同时也在鞭策污水处理设备的操作、占地、程序步骤、能源资源的投入一点点地简化。我们希望未来我们拥有更先进的技术为环境带来最大限度的洁净,也希望人们能更加爱惜身边环境,防污大于截污。
以上便是华清朗意环保小编在此教师节之际为你带来的水处理时代梳理,真诚希望对你理解水处理的发展史有用。我们也将秉承质量至上,客服为尊的宗旨,继续为你们服务!如果你还有更多关于污水处理设备的疑问,请关注华清朗意环保微信公众号吧~ 我们将很乐意为你解答。
铁路上的粪污是怎么处理的?
你知道的最冷的冷知识是什么?
城市的生活污水是怎么处理的?

城镇污水处理厂的工艺有很多种,南方和北方的也有差别,目前最成熟的工艺有氧化沟,A2O等。一般处理后的污水会排放到河流,毕竟大部分污水厂的工艺还没有好到那种程度,能达标就不错了。不过那些水资源缺乏的地区就不清楚了。
以A2O工艺为例,工艺的核心为厌氧-缺氧-好氧三段活性污泥处置。首段厌氧池,流入原污水及同步进入的从二沉池回流的含磷污泥,本池主要功能为释放磷,使污水中P的浓度升高,溶解性有机物被微生物细胞吸收而使污水中的BOD5浓度下降;另外,NH3-N因细胞的合成而被去除一部分,使污水中的NH3-N浓度下降,但NO3-N含量没有变化。
在缺氧池中,反硝化菌利用污水中的有机物作碳源,将回流混合液中带入大量NO3-N和NO2-N还原为N2释放至空气,因此BOD5浓度下降,NO3-N浓度大幅度下降,而磷的变化很小。
在好氧池中,有机物被微生物生化降解,而继续下降;有机氮被氨化继而被硝化,使NH3-N浓度显著下降,但随着硝化过程使NO3-N的浓度增加,P随着聚磷菌的过量摄取,也以较快的速度下降。
A2/O工艺它可以同时完成有机物的去除、硝化脱氮、磷的过量摄取而被去除等功能,脱氮的前提是NO3-N应完全硝化,好氧池能完成这一功能,缺氧池则完成脱氮功能。厌氧池和好氧池联合完成除磷功能。
再经过二沉池作用进行泥水分离,最后经过紫外灭菌灯管灭菌,就基本达到了排放标准。
另附:污水排放一级B标准
化学需氧量(COD)60生化需氧量 (BOD5)20悬浮物(SS)20动植物油3石油类3阴离子表面活性剂1总氮(以N计)20总磷(以P计)1氨氮8(15)色度(稀释倍数)30PH6--9粪大肠菌群(个/L)
104
除霾车是什么?
关于A2/o工艺问题?

污废水处理工艺A/O和A^2/O有何区别?

两种工艺都是为了脱氮除磷。上学期学了水质工程下,可能随着时代发展,课本内容和实际已经有了出入。A/O分为AN/O和AP/O两种,
首先介绍一下这两种污水处理工艺涉及到的生物反应:
有机物的氧化分解:有氧条件下,异养型微生物吸收氧气分解有机物
生物法脱氮:
①氨化作用:含氮有机物脱除氨基(—NH2),生成氨分子(NH3)
②硝化作用:氨分子在亚硝化菌的作用下,氧化为亚硝酸盐氮(NO2-),然后经过硝化菌作用氧化成硝酸盐氮(NO3-)
③反硝化作用:由反硝化菌将硝态离子还原为氮气(N2)
其中,硝化菌和亚硝化菌是好氧细菌,生长速度快,消耗碱度;反硝化细菌是厌氧细菌,生长速度慢,产生碱度。
生物法除磷:
聚磷菌在好氧条件下吸收污水中的磷酸盐(PO3-)并增殖成活性污泥,在厌氧条件下释放磷酸盐。因此可在其完成好氧吸磷过程后排出污泥
正文:
AN/O工艺:污水通入厌氧池,进行反硝化反应并增大碱度,然后进入好氧池,去除反硝化作用残留的有机污染物。【用于脱氮】
AP/O工艺:污水先经过厌氧池,抑制丝状菌生长(否则造成污泥膨胀)和聚磷菌厌氧释磷(相比于污水自带的磷酸盐,这个量要少很多),然后经过好氧池完成聚磷菌的增殖和好氧吸磷,通过沉淀池排出污泥。【用于除磷】
A^2/O工艺:其英文名为Anaerobic/Anoxic/Oxic工艺,即厌氧/缺氧/好氧工艺。先经过厌氧池,由聚磷菌释放磷,然后经过缺氧池,完成反硝化过程脱氮,最后经过好氧池,降解含碳有机物、完成含氮有机物的氨化和硝化、聚磷菌的好氧吸磷。【用于脱氮和除磷】
补充一些知识:
①这些工艺都涉及到污泥回流,将好氧池的部分污泥回流到第一个池子里,补充污水中的生物量。回流量与被排出的污水量之比称为回流比
②反硝化作用的厌氧细菌增殖慢,因此脱氮要求较低的负荷(高回流比)和较长泥龄,要求原水足够的硝酸盐。除磷需要较高污泥负荷和较短的泥龄(尽量多得吸收磷酸根),且硝酸盐不利于除磷。因此A^2/O工艺在脱氮和除磷两方面不能同时取得较好效果。
各能源对比????感谢各位能源大佬解惑?
焦化厂污水怎么处理?

生化处理A2/O2工艺。焦化废水生化处理A2/O2工艺特点:
1、该工艺适用于有机物浓度高、废水的可生化性差、同时需脱氮的工业废水。
2、该工艺在厌氧段不仅可以在运行成本比好氧法相对较低的情况下去除水中的有机物,还可以大大改善废水的可生化性,为后续的处理做准备。
3、厌氧、缺氧、好氧三种不同的环境条件和不同种类微生物菌群的有机配合,能同时具有去除有机物、脱氮的功能。
4、在厌氧、缺氧、好氧交替运行下,丝状菌不会大量繁殖,不会发生污泥膨胀现象。
合成机油一定比矿物机油好吗?
河道治理中如何去除氨氮,其难点和症结在何处(河道中该如何使硝化细菌的作用变大)?

谢邀。
所谓生态混凝土(此类混凝土可以种植物)、河床碎石等,无非是起到一个生物载体、浮床的作用,其实并不高端。
有些地方找我们做河道治理,但是风险很大。河道治理的前提务必是源头截留控污,涉及到流域排污点的排查和监管,这原则上应该是政府行为,需要行政力量,不是企业该做、能做的事儿。别人有个项目做了2个月的实验没有效果,因为有些黑暗排污点政府没有排查出来,最后只能自己吞下实验投资。所以河道治理我们轻易不接。
在污水处理物理方法中,有一种是滤料过滤法,滤料过滤法能使污水达到处理什么效果?

1,物理截留,常见于市政污水的深度处理段,生化池出水经混凝沉淀后进滤池,去除悬浮物,降低出水SS,Cod,p,等
2吸附及化学反应,常见于工业污水的处理如利用沸石吸附或者通过氧化铝滤罐除氟等
3,微生物降解,如曝气生物滤池,利用附着在滤料上的生物膜可降解有机物,处理后出水bod,氨氮浓度都会大幅降低,但若出水溶解氧浓度高会影响脱氮效果
此外,污水处理工艺的处理效果跟进水水质,运行参数息息相关,所有不提进水水质就报去除效率的环保公司都是在耍流氓
污水处理中厌氧段和好氧段的作用是什么,主要消耗的什么?降低污水中的哪些指标?

1,发生厌氧水解,降解长碳链物质为短链挥发性脂肪酸,提高污水的可生化性,
2,发生厌氧产气,使得污水中的COD得到去除,再上面1的基础上进一步转化为沼气等物质,使得水体COD降低。
3,在强化生物除磷工艺EBPR中,厌氧起到释磷作用,为下一步聚磷菌过量吸磷做准备。
好氧段作用包括但不限于以下几种;
1,去除COD,和BOD,一般用于COD不高(比如低于800)情况,
2,去除氨氮:使其转化为亚硝或者硝氮,为系统脱氮做准备,再到缺氧段和COD一起进行反硝化脱氮。
3,EBPR工艺中好氧过量吸磷作用,去除水中磷酸盐;
常见生活污水处理工艺优缺点分析~

氧化沟工艺
氧化沟是活性污泥法的一种变形,其池体狭长,故称为氧化沟。氧化沟有多种构造型式,典型的有:A:卡罗塞式;B:奥巴尔型;C:交替工作式氧化沟;D:曝气—沉淀一体化氧化沟
氧化沟技术已广泛应用于大中型城市污水处理厂,其规模从每日几百立方米至几万立方米,工艺日趋完善,其构造型式也越来越多。

氧化沟工艺的优点:
进出水装置简单;污水的流态可看成是完全混合式,由于池体狭长,又类似于推流式;BOD负荷低,处理水质良好;污泥产率低,排泥量少;污泥龄长,具有脱氮的功能。
缺点:
但氧化沟工艺与SBR和普通活性污泥工艺比较,能耗高,且占地面积较大。
A/O法
即厌氧—好氧污水处理工艺,流程如下:
生物接触氧化法是一种介于活性污泥法与生物滤池之间的生物膜法工艺,其特点是在池内设置填料,池底曝气对污水进行充氧,并使池体内污水处于流动状态,以保证污水与污水中的填料充分接触,避免生物接触氧化池中存在污水与填料接触不均的缺陷。
A/O法的优点:
①体积负荷高,停留时间短,节约占地面积;
②生物活性高;
③有较高的微生物浓度;
④污泥产量低;
⑤出水水质好且稳定;
⑥动力消耗低;
⑦不产生污泥膨胀;
⑧挂膜方便,可间歇运行;
⑨工艺运行简单,操作方便,抗冲击负荷能力强。
缺点:
目前存在的问题主要是池内填料间的生物膜有时会出现堵塞现象,尚待改进。研究的方向是针对不同的进水负荷控制曝气强度,以消除堵塞;其次是研究合理的氧化池池型和形状、尺寸和材质合适的填料。
SBR法
由于SBR在运行过程中,各阶段的运行时间、反应器内混合液体积的变化以及运行状态等都可以根据具体污水的性质、出水水质、出水质量与运行功能要求等灵活变化。对于SBR反应器来说,只是时序控制,无空间控制障碍,所以可以灵活控制。因此,SBR工艺发展速度极快,并衍生出许多种新型SBR处理工艺。

SBR工艺优点:
出水水质较好;不产生污泥膨胀;除磷脱氮效果好。
缺点:
其缺点是池容和设备利用率低,占地面积较大、运行管理复杂,自控水平要求高。
曝气生物滤池
曝气生物滤池是 90 年代初兴起的污水处理新工艺,已在欧美和日本等发达国家广为流行。该工艺具有去除 SS 、 COD 、 BOD 、硝化、脱氮、除磷、去除 AOX (有害物质)的作用其特点是集生物氧化和截留悬浮固体与一体,节省了后续沉淀池 ( 二沉池 ) ,其容积负荷、水力负荷大,水力停留时间短,所需基建投资少,出水水质好:运行能耗低,运行费用省。

BAF工艺的优点:
1 、总体投资省,包括机械设备、自控电气系统、土建和征地费;
2 、占地面积小,通常为常规处理工艺占地面积的80% ,厂区布置紧凑,美观;
3 、处理出水质量好,可达到中水水质标准或生活杂用水水质标准;
4 、工艺流程短,氧的传输效率高,供氧动力消耗低,处理单位污水的电耗低;
5 、过滤速度高,处理负荷大大高于常规处理工艺;
缺点:
曝气生物滤池运行维护较复杂,尤其是填料的反洗与更换,从而导致运行费用也较高。
MBR工艺
膜-生物反应器工艺(MBR工艺)是膜分离技术与生物技术有机结合的新型废水处理技术。它利用膜分离设备将生化反应池中的活性污泥和大分子有机物质截留住,省掉二沉池。

MBR的技术优势:
1、出水水质好
2、 工艺参数易于控制,能实现HRT与SRT的完全分离
3、 设备紧凑,省掉二沉池,占地少
4、 剩余污泥产量少
5、 有利于增殖缓慢的硝化细菌的截留、生长和繁殖
6、 克服了常规活性污泥法中容易发生污泥膨胀的弊端
系统可采用PLC控制,易于实现全程自动化
缺点:
MBR工艺造价相对较高,为普通污水处理工艺的1.5-2.0倍。国产膜片质量较差、使用时间较短,进口膜片价格过高,运行维护及更换费用较高
各种工艺之比较
为了降低投资和运行成本,因地制宜地进行工艺方案(主要是生物处理方案)比较是必要的。进行多种工艺方案的比较,包括投资费用、运行费用、占地面积、出水水质、后期管理等各方面进行系统的比较,因地制宜的选择适合的工艺。
在生活污水中的应用
随着我国水处理工艺技术的不断改进,近两年A-O、BAF及MBR工艺应用越来越广,前些年氧化沟工艺的应用较多,造价较低,适用于土地资源较丰富的地区。
占地面积与总池容
氧化沟与SBR工艺占地面积较大,A-O、BAF工艺占地面积较小,MBR占地面积最小(为普通工艺占地面积的60%)。
投资费用
相比较而言,氧化沟、SBR投资费用最低,A-O较低,MBR和曝气生物滤池造价相对较高,BAF较普通工艺高出25%左右,MBR根据膜的不同,价格相差较大(采用国产膜,总投资较普通工艺高出40%左右,进口膜则要高80%)。
运行成本及管理
SBR自动化程度要求较高;氧化沟自动化程度较低;BAF反洗等很难实现自动化操作,需人工操作,则人工费较高;若不考虑折旧费,单从人工费、电费、药剂费来考虑每日运行费用,MBR最低,为0.35元/d左右,BAF、A-O在0.50元/d左右;若考虑折旧费,考虑到MBR和BAF维护及更换费用较高,则其运行费用比A-O要高。
出水水质
MBR 、BAF、A-O工艺出水水质较好,可满足回用标准,耐冲击负荷较高,运行稳定。
结论
每项工艺技术都有其优点、特点、适用条件和不足之处,不可能以一种工艺代替其他一切工艺,因此,要根据现场情况做出适宜的选择。根据甲方提供的相关资料,在可利用面积较少的前提下,不推荐使用氧化沟和SBR工艺。
同时,为了降低投资和运行成本,确保出水水质,根据技术上合理,经济上合算,管理方便,运行可靠且有利于近、远期结合的原则,进行工艺方案的优化抉择。
——责任编辑:希洁化学
污水细处理,郑州更美丽
废水氨氮超标的处理方法,太棒了!(图)

污水氨氮超标原因
1.生化池中温度过低,导致菌种活性不高,分解能力下降;
2.生化池中污泥的泥龄太长;
3.分顿控制时间短,难控制;
4.硝化反应没有控制好PH等。

解决办法:
(1) 减少进水量,减小内回流比,延长好氧单元的实际水力停留时间,提高硝化效果密切关注其他水质指标及污泥指标的变化;
(2) 尽量避免出现污泥解体或污泥膨胀现象;若出现该情况则应迅速向系统中投加氓凝剂或铁盐,改善污泥絮凝及沉降性能;
(3) 关注 pH 及 TP 情况,尽量保证系统处于弱碱性环境,必要时向系统中投加适量的Na2C03以补充硝化所需的碱度;
(4) 若反应器内TP浓度显著低于平时水平,则应向系统中补充适当的磷酸二氢饵或磷肥,改善污泥的絮凝效果及硝化能力;
(5) 加大外回流比、维持生化单元相对较高的 污泥浓度,提高系统的抗冲击负荷能力;
(6) 适当提高 DO 浓度 (2.5 -4.0 mglL) ,改善 硝化效果;
(7) 待这部分污泥进入二沉池后,减少外回流量并增大剩余污泥排放量,将此部分污泥尽快进行无害化处理;
(8) 若条件允许,可以分别测定污泥呼吸指数 及硝化速率,协助超标原因的判断;
(9) 加大取样化验分析频次,检验所采取的应 急措施对出水水质的改善效果,否则应更换其他方法或多种方法联用,尽量缩短处理系统的恢复时间。

常用的氨氮超标处理方法:
生物脱氮法:
生物法除氮的工艺很多,通常有AO、AAO、UCT工艺以及生物膜、生物滤池跟氧化沟,每种工艺都包括有厌氧段和好氧段。
AAO工艺主要是通过厌氧、缺氧、好氧交替运行来达到脱氮的效果,因为丝状菌不能大量增殖,所以一般不会发生污泥膨胀的现象,SVI值一般小于100。在运行中勿需投药,但要在厌氧缺氧段需要不断搅拌以增加溶解氧,减少停留时间,防止出现污泥大量释磷。具有运行费用低的特点,但是脱氮效果也很难再进一步提高。
希洁氨氮去除剂:
投加希洁氨氮去除剂,无需改变原有工艺流程,可直接投加,操作简单方便,药剂主要是通过跟游离氨和铵离子形成氮气来达到去除的效果,希洁氨氮去除剂具有投加量少,对氨氮的去除率髙,处理结果稳定,不会产生二次污染。同时还有脱色、降低COD等辅助功能,具体投加量可以根据实际情况来调整,成本可控。

——责任编辑:希洁化学
流化床填料具有什么特点?

流化床填料特点:
流化床填料是采用优质的共聚材料,长时间浸泡在废水不会降解,也不会对微生物有毒害作用,优于采用其它诸如聚氯乙烯等材料。
特殊的结构,空心填料结构为内外共有三层空心圆,每个圆内有1条棱,外有36条棱,经多次研究开发成功,采用一次成型。 高的比表面积,普通微生物比表面积为90-180,空心填料的比表面积可达600,双比面积高达860以上,由于具有高的比表面积,则单位容积内生物量就高,可以达到水力停留时间短的目的。
微生物的高活性。在填料的表面生长的微生物膜由于填料流化碰撞。曝气冲刷使微生物处于高活性的对数增长期,处理效率高, 空心填料为飘浮型,更换方便,使用寿命长,脱氮、分解有机物能力强,达到去除氨氮目的。
订货请明确所需填料流化床填料规格型号、数量等。
更多流化床填料相关内容请浏览:流化床填料,流化床填料价格|报价-广州市绿烨环保设备有限公司



技术 | 石化二级出水处理工艺

石化废水主要是指在石油炼化、加工过程中产生的废水,该类废水具有水量大、水质复杂、有机污染物浓度高、毒性大,难生物降解等特点,属于较难处理的工业废水,对环境污染严重。

中国目前每年的工业废水排放量超过2.1×1010t,石化废水排放量大约占3%-4%。石化废水的二级处理一般采用活性污泥法为主的处理工艺,处理后的出水COD一般在100mg·L-1左右。石化工业园区内有些装置出水含磷较高,如丁苯橡胶废水,造成最终二级出水中TP浓度偏高。随着世界各国对水体水生态和饮用水安全标准的提高,中国政府于2015年7月实施《石油化学工业污染物排放标准》(GB31571-2015),二级出水中COD、TP等主要有机污染物浓度达标压力较大,我国大部分石化综合污水厂面临着深度处理的技术需求。
曝气生物滤池(BAF)是一种膜法生物处理工艺,可以用于SS去除,有机物去除,硝化除氮、反硝化脱氮和除磷等,具有比表面积大、有机负荷高、工艺简单、过滤作用好及易于反冲洗等特点,在国内外污水深度处理中已广泛应用。臭氧由于其强氧化性(氧化还原电位为2.07V,在水中仅比氟原子、氧原子和羟基自由基低),能够显著地改变有机物的分子结构,提高废水的生化性,在污水处理方面研究一直备受关注。

臭氧和BAF组合工艺既发挥了化学氧化的有效性,又兼顾了生物处理的经济型,在石化废水深度处理方面有广阔的应用前景。近年来,臭氧和BAF组合工艺在工业废水深度处理中得到了广泛应用,并且发现BAF-臭氧组合工艺更适合于石化二级出水的深度处理。但是目前研究多集中于COD处理效果,对TP处理效果研究很少。由于BAF的结构导致生物除磷的效果非常有限,需要投加铁盐等除磷药剂来强化除磷。
为了同时降低COD与TP浓度,以达到最新排放标准要求,本研究探究了投加FeSO4·7H2O的BAF-臭氧强化组合工艺对石化二级出水的处理效果,同时在机制上对处理过程中有机物的相对分子质量及种类变化情况进行了探讨,以期为BAF-臭氧组合工艺原位投加FeSO4·7H2O强化处理石化二级出水的应用提供理论依据和技术支持。

1、材料与方法
1.1试验用水和试验装置
1.1.1试验用水
试验用水取自某石化工业园区污水处理厂二级出水,园区内主营石油化工兼有少量化肥厂,该厂承接了园区内60余套生产装置排放的废水,采用水解酸化、A/O法进行生化二级处理,水质随不同装置的检修具有一定的波动性。试验期间主要水质特征为:pH6-8,COD60-120mg·L-1,NH4+-N的平均值为5.83mg·L-1,TP的平均值为1.37mg·L-1。
1.1.2试验装置及运行
试验装置为有机玻璃制作的上向流BAF-臭氧,共两组(投加FeSO4·7H2O组为1号,不投加FeSO4·7H2O的对照试验组为2号),其尺寸及结构相同。BAF-臭氧组合工艺装置如图1所示,BAF反应柱和臭氧反应柱内径分别为70mm和100mm,高度均为1.6m,内部填充火山岩滤料,填充高度分别为0.8m和0.7m。反应器均使用蠕动泵BT-100型创锐作为进水泵,BAF反应柱在底部曝气,采用曝气泵、流量计控制曝气量,BAF使用蠕动泵投加FeSO4·7H2O。臭氧制备以工业级纯氧作为氧气源、山美水美YG-5臭氧发生器、防腐蚀臭氧专用流量计、LIMICEN臭氧浓度监测仪组合运行。

图1 反应器流程示意
1号和2号两组试验同时进行,根据课题组前期研究,FeSO4·7H2O投加量为9mg·L-1时强化除磷效果较好,确定BAF段工艺参数HRT=1h,气水比3:1,FeSO4·7H2O投加量为9mg·L-1;课题组前期研究表明投加量为10mg·L-1时臭氧氧化效果较好,确定臭氧投加量为10mg·L-1,HRT=30min。石化废水二级出水有机污染物种类较多、水质变化较大,工艺连续运行10d观察污染物去除效果。
1.2测试指标与测试方法
1.2.1常规指标分析方法
试验分析的常规指标COD、NH4+-N和TP等,均采用国家标准分析方法进行测定。废水中有机物分子量分级采用超滤法,具体操作参照文献进行。
1.2.2三维荧光分析方法
采用日本日立公司出产的HITACHIFL-7000型三维荧光分光光度计对所取的水样进行三维荧光测定。为防止水样中的非溶解性颗粒对水样测定的影响,水样需先经过0.45μm醋酸纤维膜过滤,再进行测定。激发波长200-500nm与发射波长为250-550nm,狭缝宽度5nm,等高线宽度10nm,扫描速率为12000nm·min-1的条件下,测定样品的三维荧光光谱特性。数据采用Origin软件进行处理,以等高线图表征。
1.2.3 GC-MS测试方法
采用文献中方法对水样进行预处理后,经气相色谱-质谱联用仪定性分析(Agilent7890,美国),所测得图谱与NIST质谱图数据库进行对比获得样品信息。HP-5MSUI型色谱柱,对水样进行半挥发性有机物定性分析。采用毛细色谱柱HP-5MS,30m×250μm×0.25μm;升温程序:初始温度40℃保持3min,以8℃·min-1的速率升温至200℃保持3min,然后以10℃·min-1的速率升温到280℃保持1min,后运行温度300℃;载气流速9mL·min-1的高纯氦气(>99.999%);分流比5∶1;进样口温度260℃。质谱条件:电离方式为电子轰击源,离子源温度230℃,四级杆温度150℃,EI源为70eV。扫描方式为全扫描,质量扫描范围29-350m/z,溶剂延迟时间2.5min。

2、结果与讨论
2.1组合工艺运行效果
2.1.1组合工艺对COD的去除
1号、2号组合工艺对COD的去除效果如图2所示。进水COD平均浓度为82.91mg·L-1,1号BAF出水COD平均浓度为73.61mg·L-1,臭氧出水平均浓度为39.63mg·L-1,平均去除率为52.20%;2号BAF出水COD平均浓度为76.91mg·L-1,臭氧出水平均浓度为53.85mg·L-1,平均去除率为35.05%。1号组合工艺COD去除率较2号组合工艺高17.15%,Fe2+的投加对组合工艺中BAF段和臭氧段COD去除效果均有提高,对臭氧段提高效果最为明显。
1号组合工艺中,BAF段对COD的去除效率较2号BAF段高4%左右,FeSO4·7H2O对COD的去除有一定的促进作用。这是由于投加FeSO4·7H2O增加了滤料的截留能力;Fe2+带正电荷,促进了有机物向带负电的微生物细胞膜表面的迁移;同时Fe也是微生物生长所需要的一种金属元素,适量的Fe会促进微生物的代谢作用。由图2可以看出,COD的去除主要集中于臭氧工艺段,其中1号组合工艺臭氧平均去除率为40.98%,2号组合工艺臭氧平均去除率为27.81%,投加铁盐后臭氧对COD的去除效果明显升高。这是因为投加FeSO4·7H2O后,BAF出水含有Fe2+和Fe3+,这两种离子是常见的臭氧氧化均相催化剂,Sauleda等提出了Fe2+催化分解臭氧形成·OH的机制,见反应式(1)和(2)。


臭氧在Fe离子催化作用下形成的·OH与有机物的反应速率更高、氧化性更强,可以氧化臭氧单独氧化无法降解的小分子有机酸、醛等,可以将有机物完全矿化,提高污水中有机物的去除率。
2.1.2组合工艺对TP的去除
1号、2号组合工艺对TP的去除效果如图3所示。进水TP平均浓度为1.37mg·L-1,1号BAF出水TP平均浓度为0.46mg·L-1,臭氧出水平均浓度为0.39mg·L-1,TP平均去除率为71.50%;2号BAF出水TP平均浓度为1.27mg·L-1,臭氧出水平均浓度为1.10mg·L-1,TP平均去除率为19.69%。1号组合工艺TP去除率明显高于2号组合工艺,这说明FeSO4·7H2O的投加对BAF-臭氧组合工艺去除TP有非常明显的促进作用,由图3可以看出,TP的去除主要在BAF段进行。

图3 组合工艺对TP的去除效果
1号BAF段TP平均去除率为66.52%,较2号BAF段高约60%,这是因为铁盐是一种高效的化学除磷药剂,化学强化除磷和生物协同除磷相结合,大大促进了除磷效果,与课题组前期研究得出的FeSO4·7H2O能有效强化BAF对石化二级出水除磷作用结论一致。经过臭氧的氧化,出水TP的浓度继续降低。大分子有机物在无机胶体颗粒(正磷酸盐沉淀)表面形成有机物保护层,造成双电层排斥作用,使胶体的稳定性增加。而臭氧氧化可使大分子有机物转化至小分子物质,将稠环芳烃的多环结构和共轭键的物质断裂、加成,破坏有机物对胶体保护作用,使得胶体脱稳后沉降被臭氧段滤料截留。与2号臭氧段相比,1号臭氧段TP去除效率有所升高,但是升高幅度较小。
2.2不同分子量有机物去除特性
BAF降解和臭氧氧化对废水中有机物的相对分子质量的变化有显著影响。图4是两个反应器对不同分子量有机物的去除情况比较。从中可以看出,原水中溶解性有机物主要集中在相对分子质量小于1×103之内,经过BAF-臭氧组合工艺处理后,两组工艺出水有机物总量大幅下降。
图4

BAF-臭氧处理前后相对分子质量分布及TOC对比
经过BAF处理后,两组工艺各梯度的相对分子质量有机物都有一定去除,其中分子量3×103-5×103的有机物去除最为明显。1号组合工艺BAF段出水各分子量有机物去除效率高于2号组合工艺,这是由于FeSO4·7H2O在水解过程中形成的Fe2+、Fe3+高价态正电荷离子通过静电引力,可置换胶体颗粒表面较多的低价正离子,使双电层变薄,进而使得排斥势垒减弱直至消失,胶体颗粒发生凝聚作用,因此,FeSO4·7H2O在水解过程中形成的Fe2+、Fe3+络合物能与废水中的胶体颗粒絮凝沉,可有效地去除废水中的有机物。与BAF段出水趋势相反,两组工艺臭氧段出水中相对分子质量3×103-5×103的有机物所占比例升高,而大分子有机物(相对分子质量>5×103的有机物)总量大幅下降,这可能是因为臭氧将相对分子质量5×103以上的有机物破碎分解,生成部分相对分子质量3×103-5×103的有机物。由图4(b)中看出,原水相对分子质量小于1×103的有机物占52%左右,经过BAF-臭氧处理后,1号、2号组合工艺臭氧段出水中相对分子质量小于1×103的有机物所占百分比分别为75.39%和65.38%,较臭氧氧化前显著升高。这是由于O3臭氧具有极强的氧化性,破坏CC、NN、CO等不饱和键,可将大分子物质氧化成低毒、易降解小分子、甚至彻底矿化为CO2和H2O。

图5 BAF-臭氧处理石化二级出水前后三维荧光图
1号组合工艺臭氧氧化效率高于2号组合工艺,这是因为1号组合工艺BAF出水中含有一定量的Fe2+、Fe3+络合物,这些物质作为催化剂,臭氧在其表面被吸附富集,并与催化剂表面羟基基团作用,羟基基团促进臭氧分解,形成的·OH使有机物的降解速率更高。
2.3三维荧光光谱特征研究
石化二级出水、1号、2号工艺各段出水中溶解性有机物三维荧光光谱如图5所示,其主要荧光峰有3个,其中,Flu1为色氨酸类芳香族蛋白质荧光峰;Flu2为类溶解性微生物代谢产物荧光峰;Flu3为类腐殖酸的荧光峰。通过进一步分析三维荧光光谱的数据矩阵,得到各荧光峰的位置及对应的荧光强度(FI)见表1。Flu4表征水样中总荧光峰,其荧光强度是水样中Flu1-Flu3荧光峰的荧光强度之和。石化二级出水经过2号工艺BAF处理后各荧光峰强度提高,这是因为一些溶解性微生物代谢产物例如多糖、蛋白、腐殖质物质在BAF处理中产生,而这些物质均有一定的荧光性。加铁盐的1号BAF出水总荧光峰Flu4强度比石化二级出水略低,这是由于铁元素是微生物所需的微量元素,一定量的FeSO4·7H2O可促进微生物代谢,增强微生物活性,导致BAF生化作用增强,而类溶解性微生物代谢产物和类腐殖质均属于生化性较强的物质,更容易被BAF去除,所以Flu2和Flu3的荧光峰强度较石化二级出水均有降低。
然而Flu1的荧光峰强度较石化二级出水升高,首先因为石化废水中所含的有机物多以苯环刚性结构有机物、π—π共轭双键的不饱和有机物为主,BAF工艺并不能够有效去除毒性较大的类芳香族蛋白质,其次BAF生化反应产生的微生物次生代谢产物具有一定荧光性,从而导致Flu1荧光峰强度升高。两组工艺的臭氧段出水中,Flu1、Flu2、Flu3的荧光峰强度均有明显的降低,而且Flu3蓝移了5-10nm。蓝移主要是由大分子有机物分解为小分子有机物或者稠环芳香烃的多环结构分解破坏引起的。从本研究结果来看,由于O3的强氧化性,将难降解有机物大分子氧化为小分子物质,将稠环芳烃的多环结构及共轭双键破坏,导致各类荧光峰强度的降低以及Flu3的蓝移。其中1号臭氧段出水荧光峰强度明显低于2号臭氧段出水,这是由于进水中铁离子对臭氧催化,产生氧化性更强的·OH,提高了对有机物的氧化去除能力。因此投加铁盐能够强化BAF-臭氧组合工艺对石化污水厂二级出水的处理效果。

表1 废水中三维荧光主要峰位置和强度
2.4特征有机物去除情况研究
500mL原水、1号工艺出水、2号工艺出水,液液萃取其中半挥发性有机物,经GC-MS进行定性分析。图6为原水、1号工艺出水、2号工艺出水气相色谱图。从中可以看出,石化二级出水经过BAF-臭氧组合工艺处理后,不仅峰高有所降低,且峰的数量减少明显,经过与MS数据库对比,石化二级出水检出主要有机物约123种,其中含不饱和键的物质占80%以上,主要为环烷烃,卤代烃、苯系物等难降解物质,这些物质结构复杂,并且具有一定的生物毒性。BAF-臭氧处理前后废水中检出的主要特征有机污染物(即面积归一,百分比之和大于95%的有机物),统计如表2所示。进水中检出主要特征污染物为21种,经处理后1号工艺、2号工艺出水检出主要特征污染物分别为5种和7种。
从物质种类的数量看,1号工艺处理效果好于2号工艺。为了更直观比较两组工艺的处理效果,挑选存在于原水、1号工艺出水、2号工艺出水中的共同特征有机物作为代表物质进行对比,对比指标以色谱峰的积分面积来衡量物质的相对去除,对比结果见表3所示。1-氯-3-甲基-2-丁烯和氯乙醛缩乙二醇在原水、1号工艺和2号工艺出水中均存在,经2号BAF-臭氧处理后,1-氯-3-甲基-2-丁烯和氯乙醛缩乙二醇去除率分别为20.7%和74.7%,而1号BAF-臭氧工艺对这两种物质的去除率分别提高了21.3%和5.6%,这是由于臭氧氧化对含不饱和键有机物去除效率较高,其中1号工艺通过投加铁盐,不仅会促进BAF微生物的代谢,对有机物的去除有一定促进作用,而且BAF出水中残留的Fe2+和Fe3+能对臭氧氧化起到均相催化效果,氧化效率更高,进一步提高有机物去除效率。BAF-臭氧工艺在铁盐的双效耦合作用下,能够达到更好的处理效果。

图6 BAF-O3组合工艺处理前后水样的GC-MS图谱

表2 石化二级出水BAF-臭氧组合工艺处理前后主要有机物统情况

表3 AF-臭氧组合工艺进出水中典型特征有机物去除对比
3、结论
(1)FeSO4·7H2O能有效强化BAF-臭氧组合工艺对石化二级出水处理效果。本研究中,在二级出水COD平均浓度82.91mg·L-1,TP平均浓度1.37mg·L-1,臭氧投加量10mg·L-1条件下,投加浓度为9mg·L-1的FeSO4·7H2O对组合工艺处理效果有明显提升。投加FeSO4·7H2O后BAF-臭氧组合工艺出水COD去除率提高17.15%,除磷效率提高51.81%。
(2)经过BAF-臭氧组合工艺处理后,相对分子质量小于1×103的不饱和有机物所占比例呈上升趋势。BAF段反应器处理后出水各相对分子质量有机物都有一定的去除,其中相对分子质量3×103-5×103的有机物去除最为明显;经臭氧段工艺后,大分子有机物总量大幅下降。投加FeSO4·7H2O后,各分子量有机物去除率均得到提升。

(3)通过三维荧光分析得到石化废水二级出水溶解性有机物主要为类芳香蛋白质和类腐殖酸,投加FeSO4·7H2O后,BAF-臭氧组合工艺出水中各类物质荧光峰强度均降低,铁离子对臭氧催化,产生氧化性更强的·OH,提高了对有机物的氧化去除能力。
(4)经过GC-MS图谱和有机物统计分析,BAF-臭氧处理后废水中含不饱和键的有机物去除明显,投加FeSO4·7H2O后,BAF-臭氧工艺在铁盐的双效耦合作用下,处理后出水中有机物的种类减少,浓度降低。
更多精彩内容请关注环创空间微信公众号:GEC-SPACE
技术 | 污水处理厂尾水脱氮工艺研究

由于冬季低温的影响,中国北方污水处理厂常面临季节性TN超标的问题。此外,受制于市政污水低碳氮比的水质特性,污水处理厂也面临着异养反硝化不充分而导致的TN超标问题。与异养反硝化相比,硫自养反硝化是以还原态硫为电子供体,NO3-N为电子受体进行的自养反硝化过程,能够有效地去除水中的NO3-N。硫自养反硝化因无需外加碳源、运行成本低、污泥产量少、效率高、工艺简单等优点而得到广泛关注。

目前,Li等将硫自养反硝化工艺应用于低温、低碳氮比条件下污水处理厂氮污染物的去除,并达到了90%以上的氮去除效果。另一方面,硫自养反硝化过程作为冬季或低碳比条件下的脱氮保障工艺,常面临季节性、间歇性运行的操作方式。但是针对硫自养反硝化工艺饥饿忍耐后能力恢复及其对微生物菌群结构影响的研究却鲜见报道。
近年来,分子生物学作为有效手段用来研究污水处理过程中微生物群落结构特性,如变形梯度凝胶电泳、克隆文库和高通量测序等。MiSeq高通量测序以Illumina的测序技术为基础,通过可逆终止试剂方法对数百万个基因片段同时进行大规模平行测序,具有分析结果精确、高速等特点,被广泛应用于污水处理过程中微生物结构和多样性研究。

本文以颗粒硫磺和黄铁矿的硫自养反硝化反应器为研究对象,探究反应器在经过30d饥饿忍耐后的恢复情况,并利用MiSeq高通量测序对饥饿忍耐前后反应器中细菌群落的变化情况进行分析,以期为污水处理厂脱氮保障工艺的季节性、间歇性运行提供技术参考。
1、材料与方法
1.1试验装置
硫自养反硝化工艺采用降流式生物滤池,试验装置示意图如图1所示。反应器为密封的有机玻璃柱,内径140mm,高度1170mm,填充高度500mm,有效容积5.94L。进水口距柱底600mm,沿反应器不同高度处分别设置取填料口,取填料口距填料顶部的距离分别是100mm和300mm。

图1 试验装置示意
试验共设2个反应器(分别记为1号、2号),1号反应器加入硫磺和白云石的混合物,2号反应器加入黄铁矿和白云石的混合物。2个反应器中的填料均按1:1的体积比混合装填,硫磺、黄铁矿和白云石的粒径均为5-10mm。其中,硫磺/白云石的填充区域孔隙率为45.9%,黄铁矿/白云石为44.1%。
1.2进水水质和接种污泥
本试验用水为人工模拟污水厂尾水,水质指标为:NO3--N浓度为30mg·L-1,NH4+-N浓度为2mg·L-1,TP浓度为1mg·L-1,COD浓度为18-23mg·L-1,pH为6.8-7.2。接种污泥取自高碑店污水处理厂二沉池回流污泥。
1.3反应器运行方式
反应器在低温下运行85d,主要分为稳定期、饥饿期和恢复期:稳定期(1-30d),正常进水,反应器稳定运行,平均温度为12℃;饥饿期(31-60d),停止进水,反应器处于饥饿状态,平均温度12.8℃;恢复期(61-85d),恢复进水,反应器进入恢复期,平均温度为14℃。饥饿期结束后及恢复期采集反应器中的污泥样品(1号饥饿期A1、恢复期A2;2号饥饿期B1、恢复期B2)进行MiSeq高通量测序分析,分析反应器饥饿期及稳定期细菌群落的变化情况。
1.4测试指标和方法
1.4.1水质指标的测定
反应器运行期间,定期采样进行水质指标的测定,检测项目包括硝酸盐氮(NO3--N)、亚硝氮(NO2--N)、总氮(TN)、总磷(TP)等。其中NO3--N采用紫外分光光度法测定;NO2--N采用N-(1-萘基)-乙二胺分光光度法测定;TN采用碱性过硫酸钾消解紫外分光光度法测定;TP采用钼酸盐分光光度测定。试验所用分光光度计为HACHDR5000紫外可见分光光度计。生物量采用脂磷法测定。
1.4.2微生物多样性的测定
DNA的提取与PCR的扩增:为了探究系统的细菌群落,在反应的饥饿期和恢复期进行取样。采用E.Z.N.A.SoilDNA试剂盒(美国Omega公司),按照试剂盒说明书提供的操作步骤提取。提取的DNA用1%琼脂凝胶电泳进行检测。PCR的扩增区域为16SrRNA的V3-V4区,细菌16SrRNA扩增引物采用通用引物(338F/806R)。引物名称和引物序列分别是338F(ACTCCTACGGGAGGCAGCAG)和806R(GGACTACHVGGGTWTCTAAT)。PCR反应体系:Forwardprimer(10μmol·L-1),2μL;Reverseprimer(10μmol·L-1),2μL;dNTPs(2.5mmol·L-1),4μL;10×PCRbuffer,5μL;PyrobestDNAPolymerase(2.5U·μL-1),0.3μL;补充ddH2O至50μL。反应程序:先95℃预热5min;然后进行25个循环(95℃变形30s,56℃退火30s,72℃延伸40s),最后72℃延伸10min。用AxyPrepDNA凝胶回收试剂盒(Axygen公司)回收PCR产物,经Tris-HCl洗脱后,用2%琼脂糖凝胶电泳检测。根据电泳结果。将PCR产物用QuantiFluorTM-ST(Promega公司)进行定量,按照每个样品的测序量要求,进行相应比例的混合。
MiSeq文库构建与测序:用高通量测序平台IlluminaMiSeq对扩增产物进行MiSeq高通量测序。测序得到的PEreads根据overlap关系进行拼接,同时过滤掉低质量的reads,区别样品后进行OUT聚类分析和物种分类学分析。
生物多样性和分类学分析:首先将序列按照彼此的相似性归为操作分类单元(OTU)。按照97%相似性进行OUT聚类,采用RDPclassifier对97%相似水平的OUT代表序列进行分类学分析。利用MOTHUR软件对样品覆盖率(coveragepercentage),ACE,Chao丰富指数以及Shannon多样性指数进行计算。同时为了保证分析的高可信度,根据SILVA106库中的参考序列对OUT进行种属鉴定,种属比对的可信度阈值设定为80%。
2、结果与讨论
2.1反应器运行情况
稳定期、饥饿期和恢复期的硫自养1号和2号反应器进出水水质的变化情况如图2所示。进水NO3--N、NO2--N、TN和TP平均浓度分别为30.00、0.01、35.88和1.00mg·L-1。稳定期,反应器在低温下(12℃)运行30d后,1号反应器出水NO3-N、NO2-N、TN和TP浓度分别为1.78、0.03、2.87和0.91mg·L-1,TN去除率为91.9%,1号反应器具有较高的脱氮效果。2号反应器出水NO3-N、NO2-N、TN和TP浓度分别为11.32、0.11、13.10和0.14mg·L-1,TN和TP去除率分别为63.49%和86.41%。2号反应器具有同步脱氮除磷的效果。

图2 饥饿前后反应器NO3--N、NO2--N、TN、TP的变化
反应器稳定运行后,停止进水,进入饥饿期。经过30d的饥饿忍耐后,反应器在低温下(14℃)恢复进水,进入恢复期。由图2可以看出,饥饿忍耐后,1号反应器出水NO3-N增加到27.87mg·L-1,2号反应器出水NO3-N增加到26.56mg·L-1。但随着反应器的恢复,出水NO3-N浓度逐渐降低,1号反应器经5d的恢复(第65d),出水NO3--N和TN浓度分别为0.38mg·L-1和2.37mg·L-1,去除率分别为98.8%和93.6%;2号反应器经11d的恢复(第71d),出水NO3-N和TN浓度分别为10.51mg·L-1和12。91mg·L-1,去除率为66.40%和65.57%。其次,在恢复期2个反应器的出水NO2-N浓度均呈现先增加后降低的趋势,恢复初期均出现NO2--N的积累。由图2可知,1号反应器恢复期第3d(第63d)出水NO2-N浓度为2.17mg·L-1;2号反应器恢复期第5d(第65d),出水NO2-N浓度为0.37mg·L-1。随着反应器稳定运行,最终1号反应器NO2-N浓度下降到0.1mg·L-1以下,2号反应器有0.1mg·L-1NO2-N的积累量。此外,饥饿忍耐未对2号反应器TP的去除效果产生明显的影响。原因如下,2号反应器对磷的去除主要是通过黄铁矿中的铁与磷结合形成铁磷沉淀物及铁的氧化物和氢氧化物对磷有吸附作用,饥饿条件下并未明显影响这一物理化学过程。结果表明,与1号反应器相比,2号反应器的恢复时间略长,但2个反应器都能在低温、短期内恢复到正常处理效果。
饥饿期(第60d)及恢复期(第85d)反应器不同高度处微生物量的变化如表1所示。从中可知,1号和2号反应器饥饿忍耐后不同高度处微生物量均低于恢复期。分析原因,主要是饥饿期间反应器中部分微生物对饥饿环境的忍耐能力差,裂解死亡;部分细菌因营养物质缺乏而进入休眠状态,不能进行生长繁殖。反应器恢复进水后,生物膜的活性和生长可得到不同程度的恢复,使得微生物量有所增加,同时反硝化性能得以恢复。

表1 饥饿忍耐前后反应器不同高度处生物量的变化/nmol·g
2.2微生物多样性的分析
利用MiSeq平台对A1、A2、B1、B2这4个污泥样品进行高通量测序,分别获得39989、39302、45227、61572条优化序列。将优化序列截齐后与SILVA106库比对后进行聚类,在97%的相似性下分别获得3188、3412、1734、1976个OUTs。并且4个污泥样品的覆盖率(Good'scoverage)均在95%以上,表明本研究中构建的序列库可以覆盖细菌群落的多样性(见表2)。

表2 样品的物种丰富度和多样性分析
Chao指数和Shannon指数表示微生物群落结构的变化。群落丰富度用Chao指数描述,其值越高表明群落物种的丰富度越高;Shannon指数可以反映样品的多样性程度,其值越高表明群落物种的多样性越高。表2显示,4个污泥样品的Chao和Shannon指数均为A2>A1>B2>B1。结果表明,1号反应器中的物种丰度和多样性均高于2号反应器。分析原因,主要是黄铁矿/白云石反应器(2号)中所用硫源为黄铁矿,其硫含量低于硫磺。这使得硫磺/白云石反应器(1号)中的硫自养反硝化菌群因得到充足基质而更好的生长。即由于基质含量的不同,黄铁矿/白云石反应器中的自养反硝化菌种的生长受到一定的限制。另一方面,经过30d的饥饿忍耐后,硫磺/白云石和黄铁矿白云石2个反应器中微生物丰富度和多样性明显低于恢复期。分析原因,主要是饥饿期部分微生物对饥饿环境的忍耐能力差,裂解死亡,部分细菌因营养物质缺乏而进入休眠状态;恢复期生物膜的活性和生长可得到不同程度的恢复。这与上述反应器中微生物量饥饿期低于恢复期的变化是一致的。
2.3群落结构分析
基于SILVA数据库的分类信息,对饥饿期及恢复期污泥样品的高通量测序数据进行了门、纲、属水平上的分类分析。门分类水平上,4个污泥样品共检测出39个类群,门水平上的大量类群(相对丰度大于1%)如图3所示。从中可知,A1和A2样品中Proteobacteria为优势菌群,丰度分别为89.70%和89.77%,其次为Bacteroidetes(5.88%和5.60%)和Chlamydiae(1.21%和1.71%),其他菌类比例相对较低(相对丰度小于1%)。B1和B2样品中Proteobacteria为优势菌群,比例分别为51.82%和55.42%。此外,Bacteroidetes、Chlamydiae、Chloroflexi、Actinobacteria、Acidobacteria、Chlorobi、Planctomycetes、Verrucomicrobia、Gemmatimonadetes也是B1和B2样品中主要的门类(相对丰度大于1%)。结果表明,1号和2号反应器在生物群落结构和丰度上具有比较明显的差异。两组反应器最主要的优势菌门虽均为Proteobacteria,但其相对丰度存在明显的差异,且2号反应器在门水平上的主要类群较为多样。此外,每组反应器饥饿期和稳定期丰度变化不大。

图3 门水平上群落结构
纲分类水平上,1号和2号反应器中共检测出68个类群,其中7个类群为主要的纲,如图4所示。A1和A2样品中主要的纲类为β-Proteobacteria,丰度为73.42%和69.15%,且β-Proteobacteria中的一些细菌是与污泥反硝化相关的[20-22];其次为α-Proteobacteria、γ-Proteobacteria、Sphinggobacteria、Chlamydiae(相对丰度大于1%)。B1和B2样品中主要的纲类为α-Proteobacteria、β-Proteobacteria、γ-Proteobacteria。此外B1和B2污泥样品中还含有的δ-Proteobacteria、Ignavibacteria、Chlorobia、Actinobacteria、Anaerolineae、Acidobacteria、Gemmatimonadetes、Phycisphaerae。图4表明,不同样品中类群结构及丰度差异性较大,1号反应器中β-Proteobacteria的相对丰度高于2号反应器,2号反应器中α-Proteobacteria和γ-Proteobacteria的相对丰度则高于1号反应器。

图4 纲水平上群落结构
属分类水平上,1号和2号反应器大量类群如图5所示。在属水平上,2个反应器中共检测出296个细菌类群。其中A1和A2样品中主要属类为Sulfobacillus、Variovorax以及Thiobacillus,其丰度分别35.67%、8.82%、19.54%(A1)和31.98%、13.25%、11.86%(A2)。其中,Sulfobacillus是噬酸且耐热的硫化物矿石氧化菌,也是亚铁离子氧化菌。Thiobacillus为革兰氏阴性细菌,是目前被报道最多的用于还原NO3-N的硫氧化细菌,可用于硫自养反硝化处理市政污水和地下水中的NO3-N。此外,A1和A2样品中的主要类群(相对丰度大于1%)还包括Thermomonas、Ferruginibacter、Denitratisoma、Sulfurimonas、Rhizobium。

图5 属水平上群落结构
与A1和A2样品相比,B1和B2样品中的主要类群包括Sulfobacillus、Variovorax、Thiobacillus、Denitratisoma、Ferruginibacter、Neochlamydia、Woodsholea、Blastocatella、Bradyrhizobium、Sulfuritalea等菌属。并且不同时期反应器中某些菌属的相对丰度有一定的差别,如B1和B2样品中Sulfobacillus和Thiobacillus在饥饿期和恢复期的相对丰度分别为0.06%、4.88%(B1)和3.89%、0.70%(B2)。

3、结论
(1)颗粒硫磺/白云石和黄铁矿/白云石反应器经过30d的饥饿期后,分别需要5d和11d就可使NO3--N去除率恢复饥饿前的水平,且恢复期初期均出现NO2--N的积累现象。两个反应器在短时间内均能恢复稳定运行,在低温条件仍能保持良好的脱氮效果。
(2)高通量测序结果表明,黄铁矿/白云石反应器的细菌群落的丰度和多样性低于硫磺/白云石反应器。经过30d的饥饿忍耐后,两个反应器的细菌群落的丰度和多样性均略低于恢复期。
(3)微生物群落结构的分析表明,颗粒硫磺/白云石和黄铁矿/白云石硫自养反应器的优势菌门均为Proteobacteria,主要的纲类均为β-Proteobacteria。颗粒硫磺/白云石反应器中存在起主要反硝化作用的Thiobacillus。
焦化废水处理方法之水处理消泡剂
下雨影响“南水北调”水质?看科学家怎么解决

南水北调中线工程是实现我国水资源优化配置的重大战略工程,对于缓解京津冀地区水资源短缺以及促进京津冀地区经济协同发展具有十分重要的意义。中线工程水源地(丹江口水库及汉江上游)的水质安全受到全社会的高度关注。
面源污染是指地表污染物在降水冲刷作用下,通过径流过程进入江河、湖泊、水库等水体造成的污染,来源通常包括农业化肥、农村生活污水、养殖业和水土流失等。由于面源污染没有得到有效控制,目前水源地河流及丹江口水库的总氮 (TN) 和硝态氮 (NO3–‒N) 含量仍居高不下,水体存在较高的富营养化及水华暴发风险。
河岸带湿地是河流水生态系统和陆地生态系统之间的过渡带,具有较强的污染物削减能力,也是治理面源污染最经济有效的措施之一。河岸带湿地可以通过反硝化、厌氧氨氧化、植物吸收以及土壤固定等多种途径削减氮污染。反硝化途径是指在厌氧或缺氧条件下,反硝化细菌将NO3–‒N还原成一氧化二氮(N2O)和氮气(N2)的过程,被认为是湿地最重要的脱氮过程。非生物因子 (土壤性质、水质和地形地貌等) 和生物因子 (功能微生物和植被) 都与反硝化过程密切相关,但目前研究人员对土壤性质如何影响河岸带湿地反硝化速率还缺乏足够了解。
中国科学院武汉植物园博士生熊梓茜在刘文治副研究员、刘贵华研究员的指导下,以南水北调中线工程水源地的20处河岸带湿地为对象,研究了汉江河岸带湿地的反硝化脱氮能力及其控制因素。
研究人员发现,汉江干流河岸带湿地的潜在反硝化速率普遍偏低,且存在较强的季节和空间变化,春夏季湿地的反硝化速率显著高于秋冬季,而河岸带的反硝化速率显著低于水库滩涂。湿地反硝化速率与土壤含水量、硝态氮和总碳浓度、nirK和nirS基因丰度以及植物多样性都显著正相关。路径模型 (Path analysis) 分析进一步证明,土壤性质可以直接或通过改变反硝化细菌的丰度来间接调控河岸带湿地的反硝化速率。
科研人员表示,实施土壤改良和植被恢复等生态工程可有效提升中线水源地湿地的脱氮能力,维护水源地的水质安全,并确保实现“一江清水送北京”。
该研究得到了国家自然科学基金(31270583、31570463) 和中国科学院重点部署项目(ZDRW-ZS-2016-7) 的支持。研究结果以“Edaphicconditions regulate denitrification directly and indirectly by alteringdenitrifier abundance in wetlands along the Han River, China”为题,在线发表于学术期刊Environmental Science & Technology。

图1 南水北调中线水源地典型河岸带湿地景观

图2 生物和非生物因子影响湿地反硝化速率的路径分析
作者刘文治,系中国科学院武汉植物园副研究员
对于环境工程专业大量转行的现象怎么看?

作为一个农药国企研究单位环保组从业人员回答一下个人看法
为什么转行是因为从业人员看不到前途,为什么看不到前途这就涉及到很多方面了
就以我们自己组为例
首先谈自身 我们组八个人四男四女 四个男的都不是环境工程的科班出身 四个女的都是科班出身但方向各不一样 分别是湖大的 大连理工的 和北京一个什么学校的 香港科技大的 都是硕士毕业 四个男的就只有一个硕士 一个985本科 一个二本 一个专科 这是学历和性别的区别 发现大部分都是女性读环境工程
再谈我们的工作内容 我们岗位全称是 废水预处理的研究与利用。其实对于一个企业来说我们包含了 废气,废渣,废水的处理。废气达标在很多人眼里是如何脱硫,脱氮,动不动一个设备都是几百万上千万,但是如果有从事设备方面的人员 你们扪心自问一下,你们的设备适合一个生产多产品的企业的废气随便进吗? 废渣 要想处理掉最后不占面积到消失 就只有焚烧 或者填埋,最后对于盐一类的最好可以溶于水处理达标排放到江河湖海,很多想过盐可以回收利用,但是告诉你基本是想想的,因为对于危废,一个正规企业不管你处理的多么达标多么纯,他都不会用,你就是送给他甚至倒贴点钱给他,他都不会用。废水就不多说了。
绝大部分的学校的环境类相关专业教的是污水站这类工程设计,细菌培育,设备设计等等,其实对于一个大型的污染企业来说或者说现在对于环保来说最大的缺口是预处理工艺设计开发的人员。这一块环保相关专业的学生应该非常少,为什么学校不教,因为这个好拉项目但是不好交差,比如一个企业的废水无法利用微生物降解,交给某学校教授团队希望他能帮忙解决处理到能够进入污水处理站利用细菌处理达标排放。现有的工艺成熟的预处理方式就那么几种絮凝,芬顿,酸解,碱解等,手段太少了,很多人说有湿式氧化,什么电催化氧化等可以处理 ,但是很可惜无法实现工业化,只能在实验室用,至于现在在很多中文文献里的各种αβ型催化剂催化等 ,你可以找个相信你,你也相信他的人问一下这个真的有用吗?能工业化吗?再说教授团队处理这个水达标预算超标,或者预算也不超标,但是环保监控不严企业这个项目不上,很有可能教授都拿不到那么多钱,所以一般教授都不会接这种项目,没有利益的支持就不会有投入。
再谈工程设计方面,我现在环保方面需要环境工程专业的仅仅是污水站的设计是必须环境工程专业的人员的,一般来说一个厂只需要一个污水站,有些是两个 生活污水和生产污水分开,很少有三个的。那么就是说市场需求量其实并没有外人想的那么大。而且特别像我们这种企业一旦设计施工完毕 调试完毕 基本没有更改,不像生产车间还需要改造。
环评是很大一部分环境相关专业人员的就业区,大家心知肚明,有良心的都呆不久,没良心的你也不一定呆的长,因为工资不高,很大一部分明面上的营业额都被花在了公关上 到你手里的少了,没钱就没前途。
然后就是还在这个行业的死宅工科男根本不会联系你,找你联系的大部分都是没在这个行业里的,或者是你自己决定行业不佳到处去打听转行的信息所以你看到的就是都转行了的。
有机废水芬顿处理能实现达标吗?

且不说废水里主要有哪些成分,蒸发之后COD多高,如果总氮超标呢,很显然芬顿试剂并没有脱氮的效果。
我做过一个废水,废水来源是是某烯烃和丙烯腈反应后水解分层产生的废水,因为硫酸含量很高,中和之后拿去蒸发了,蒸完之后COD8万多(蒸之前十几万),做了一下芬顿,最好的结果是做完还剩6万的COD(已经试过不同浓度的芬顿试剂了,其它条件相同,鉴于咱这是做项目不是搞科研,其它条件对照实验并没有做),后来建议企业直接拿去烧了。。。。成本比物化还低。
芬顿只是一种氧化剂,并不是什么都能氧化,而且氧化的并不是那么彻底,更多的是把废水中难以生物降解的大分子有机物分解成小分子,提高后续处理的可生化性,如果说单靠芬顿能达标(姑且算是能达到污水处理厂接管标准吧,综排标准想都别想),有一些水质较好的废水有一定的可能性,但绝大多数情况下,光靠芬顿那是不靠谱的。
怎么使用氮肥增效剂?
溴素在生产中污水如何处理?

当代社会是一个飞速发展的社会,随着现代化工业进程和城市化建设的加剧,生产和生活中的废水及污水量也越来越大,水中的污染物种类也越来越复杂。为了保护人们耐以生存的自然环境,国家制定了相应的污水废水排放标准,因此,选择一个好的污水处理设备也成了重中之重的问题。

一体化污水处理设备之所以越来越备受青睐,是因为它有不少的优点。一体化污水处理设备占地小,投入少,可根据处理不同的废水的种类定制工艺和设备,维护方便简单等。正因为以上种种优点,一体化污水处理设备也成为了环保行业中的大红人。
今天,我们就来看看一体化污水处理设备是如何处理废水的。
生产排放的污水经管网系统汇集后,经粗格栅后进入后续处理系统。粗格栅主要用来拦截污水中的大块漂浮物,以保证后续处理构筑物的正常运行及有效减轻处理负荷,为系统的长期正常运行提供保证。
随后,污水会进入污水调节池,调节池内设置了预曝气系统,可提高整个系统的抗冲击性,及减少污水在厌氧状态下的恶臭味,同时可减少后续处理单元的设计规模,污水池内设置潜污泵,用以将污水提升送至后续处理单元。
污水从污水调节池出来以后,会进入缺氧池。缺氧池内设置了弹性填料,用于拦截污水中的细小悬浮物,并去除一部分有机物。该缺氧池经回流后的硝化液在此得到反硝化脱氮,提高了污水中氨氮的去除率。经缺氧处理后的污水进入好氧生物处理池。
在这之后,污水会进入接触氧化池,原污水中大部分有机物在此得到降解和净化,好氧菌以填料为载体,利用污水中的有机物为食料,将污水中的有机物分解成无机盐类,从而达到净化目的。好氧菌的生存,必须有足够的氧气,即污水中有足够的溶解氧,以达到生化处理的目的。
污水经过生物接触氧化池处理后出水自流进入二沉池,以进一步沉淀去除脱落的生物膜和部份有机及无机小颗粒,沉淀池是根据重力作用的原理,当含有悬浮物的污水从下往上流动时,由重力作用,将物质沉淀下来。经过二沉池沉淀后的出水更清澈透明。
污水经沉淀后,病毒及大肠杆菌指标仍末达到排放标准,为了消灭病毒及大肠杆菌,投加氯片消毒剂进行消毒处理,采用折板形式依靠自身重力,直接排放附近市政管道。

一体化污水处理设备是如何处理废水的?

当代社会是一个飞速发展的社会,随着现代化工业进程和城市化建设的加剧,生产和生活中的废水及污水量也越来越大,水中的污染物种类也越来越复杂。为了保护人们耐以生存的自然环境,国家制定了相应的污水废水排放标准,因此,选择一个好的污水处理设备也成了重中之重的问题。

一体化污水处理设备之所以越来越备受青睐,是因为它有不少的优点。一体化污水处理设备占地小,投入少,可根据处理不同的废水的种类定制工艺和设备,维护方便简单等。正因为以上种种优点,一体化污水处理设备也成为了环保行业中的大红人。
今天,我们就来看看一体化污水处理设备是如何处理废水的。
生产排放的污水经管网系统汇集后,经粗格栅后进入后续处理系统。粗格栅主要用来拦截污水中的大块漂浮物,以保证后续处理构筑物的正常运行及有效减轻处理负荷,为系统的长期正常运行提供保证。
随后,污水会进入污水调节池,调节池内设置了预曝气系统,可提高整个系统的抗冲击性,及减少污水在厌氧状态下的恶臭味,同时可减少后续处理单元的设计规模,污水池内设置潜污泵,用以将污水提升送至后续处理单元。
污水从污水调节池出来以后,会进入缺氧池。缺氧池内设置了弹性填料,用于拦截污水中的细小悬浮物,并去除一部分有机物。该缺氧池经回流后的硝化液在此得到反硝化脱氮,提高了污水中氨氮的去除率。经缺氧处理后的污水进入好氧生物处理池。
在这之后,污水会进入接触氧化池,原污水中大部分有机物在此得到降解和净化,好氧菌以填料为载体,利用污水中的有机物为食料,将污水中的有机物分解成无机盐类,从而达到净化目的。好氧菌的生存,必须有足够的氧气,即污水中有足够的溶解氧,以达到生化处理的目的。
污水经过生物接触氧化池处理后出水自流进入二沉池,以进一步沉淀去除脱落的生物膜和部份有机及无机小颗粒,沉淀池是根据重力作用的原理,当含有悬浮物的污水从下往上流动时,由重力作用,将物质沉淀下来。经过二沉池沉淀后的出水更清澈透明。
污水经沉淀后,病毒及大肠杆菌指标仍末达到排放标准,为了消灭病毒及大肠杆菌,投加氯片消毒剂进行消毒处理,采用折板形式依靠自身重力,直接排放附近市政管道。
催化剂评价装置哪家好?
养殖户,如何快速降低亚硝酸盐?

你知道么?污水脱氮是一个到现在还在广泛研究的难题......如果你们的水中没有有毒有害的药物残留,都是些营养元素和可生物降解的有机物,要不就灌溉农田吧。
如何理解环境工程污水处理 A2O 工艺的内在含义?

常见污水处理工艺的优缺点分析

常见污水处理工艺的优缺点分析
据统计,目前国内污水处理工艺大约在30种左右,而占比率居于前六位的污水处理工艺分别是:氧化沟工艺、A2/O工艺、传统活性污泥法工艺、SBR工艺、A/O工艺以及生物膜法工艺。以上的工艺有的在处理污水成效方面比较突出,但在经济投入方面耗损太大;而有的工艺处理效果不算理想,但却因为经济投入少而被大规模接受使用,今天我们就针对这些工艺分析一下各自的优缺点。
1. 氧化沟工艺
简单来说属于活性污泥处理法的一种变型。
优点:简化预处理,占地面积少;有较好的脱氮除磷效果。
缺点:和传统活性污泥处理法一样,在解决污泥的二次污染处理上,并没有进一步的解决污泥处理问题。

2. A2/O工艺
通过厌氧—缺氧—好氧进行生物脱氮除磷的工艺。
优点:工艺成熟,运行稳定,有机污染物去除率较高,拥有较好的耐冲击负荷,污泥沉降性能好。
缺点:反应池容积比A/O脱氮工艺还大,污泥回流量大,能耗较高,沼气回收利用经济效益差,污泥渗出需进行化学除磷。

3. 传统活性污泥法工艺
利用活性污泥去除污水中有机物的处理工艺过程。
优点:工艺成熟,运行经验丰富,有机物的去除率高,曝气池耐冲击负荷能力较低,适用于处理进水水质稳定、要求较高的大城市污水处理厂。
缺点:供氧大于需氧,造成浪费;污泥曝气池停留时间长,容积大占地广,建设费用高以及电耗大,不利于经济考虑。脱氮除磷率低。

4. SBR工艺
SBR工艺核心是反应池,是集均化、初沉、生物降解、二沉等功能于一池,无污泥回流系统,适用于间歇性排放和流量变化大的场所。
优点:生化反应推动力增大,效率提高,池内厌氧,好氧处于交替状态,净化效果好,沉淀时间短,效率高,出水质量好,耐冲击,工艺调整运行灵活,设备少,造价低。
缺点:间歇周期运行,自控要求高,电耗增大,脱氮除磷效率不高,污泥稳定性不如厌氧硝化好。

5. A/O工艺
同时具有降解有机物及脱氮作用的工艺,且运行方便。
优点:效率高,流程简单,投资省,操作费用低。
缺点:没独立污泥回流系统,不能培养出独特功能的污泥,降解率低,提高脱氮效率就须加大内循环比,因此加大了运行费用,缺氧状态不理想,影响反硝化效果。

6. 生物膜法工艺
土壤净化过程的人工强化,主要去除废水中溶解性的和胶体状的有机物污染物,对废水中的氨氮还具有一定的硝化功能。
优点:微生物多样化,生物食物链长,有利于提高污水处理效果和单位面积处理负荷,优势菌群分段运行,提高污染物降解率和脱氮除磷效果。耐冲击负荷,对水量和水质变动有较强适应性,污泥沉降性好,适合低浓度污水处理,易维护,耗能低。
缺点:对环境要求较高,载体比表面积对生物膜处理效果有很大影响,如选用的滤料比表面积达不到要求,需增大处理池面积,投资费用将增大。

所以总结以上工艺,主要有三点是企业需要关心的:
1. 所使用的工艺在脱氮除磷率方面是否达到满意的预期效果
2. 所使用的工艺在电耗、人员操作与设备扩容方面是否有利于企业经济效益
3. 所使用的工艺的时效性,如使用微生物菌处理污水,就要考虑所选用菌类功能的全面性,能否长时间适应和处理复杂的污水问题,一款好的菌类能为企业解决很多问题。
这些都是企业在针对各自使用的工艺时需要考虑到的问题。
声明:图片及部分文字素材取自网络
常见污水处理工艺的优缺点分析

据统计,目前国内污水处理工艺大约在30种左右,而占比率居于前六位的污水处理工艺分别是:氧化沟工艺、A2/O工艺、传统活性污泥法工艺、SBR工艺、A/O工艺以及生物膜法工艺。以上的工艺有的在处理污水成效方面比较突出,但在经济投入方面耗损太大;而有的工艺处理效果不算理想,但却因为经济投入少而被大规模接受使用,今天我们就针对这些工艺分析一下各自的优缺点。
1. 氧化沟工艺
简单来说属于活性污泥处理法的一种变型。
优点:简化预处理,占地面积少;有较好的脱氮除磷效果。
缺点:和传统活性污泥处理法一样,在解决污泥的二次污染处理上,并没有进一步的解决污泥处理问题。

2. A2/O工艺
通过厌氧—缺氧—好氧进行生物脱氮除磷的工艺。
优点:工艺成熟,运行稳定,有机污染物去除率较高,拥有较好的耐冲击负荷,污泥沉降性能好。
缺点:反应池容积比A/O脱氮工艺还大,污泥回流量大,能耗较高,沼气回收利用经济效益差,污泥渗出需进行化学除磷。

3. 传统活性污泥法工艺
利用活性污泥去除污水中有机物的处理工艺过程。
优点:工艺成熟,运行经验丰富,有机物的去除率高,曝气池耐冲击负荷能力较低,适用于处理进水水质稳定、要求较高的大城市污水处理厂。
缺点:供氧大于需氧,造成浪费;污泥曝气池停留时间长,容积大占地广,建设费用高以及电耗大,不利于经济考虑。脱氮除磷率低。

4. SBR工艺
SBR工艺核心是反应池,是集均化、初沉、生物降解、二沉等功能于一池,无污泥回流系统,适用于间歇性排放和流量变化大的场所。
优点:生化反应推动力增大,效率提高,池内厌氧,好氧处于交替状态,净化效果好,沉淀时间短,效率高,出水质量好,耐冲击,工艺调整运行灵活,设备少,造价低。
缺点:间歇周期运行,自控要求高,电耗增大,脱氮除磷效率不高,污泥稳定性不如厌氧硝化好。

5. A/O工艺
同时具有降解有机物及脱氮作用的工艺,且运行方便。
优点:效率高,流程简单,投资省,操作费用低。
缺点:没独立污泥回流系统,不能培养出独特功能的污泥,降解率低,提高脱氮效率就须加大内循环比,因此加大了运行费用,缺氧状态不理想,影响反硝化效果。

6. 生物膜法工艺
土壤净化过程的人工强化,主要去除废水中溶解性的和胶体状的有机物污染物,对废水中的氨氮还具有一定的硝化功能。
优点:微生物多样化,生物食物链长,有利于提高污水处理效果和单位面积处理负荷,优势菌群分段运行,提高污染物降解率和脱氮除磷效果。耐冲击负荷,对水量和水质变动有较强适应性,污泥沉降性好,适合低浓度污水处理,易维护,耗能低。
缺点:对环境要求较高,载体比表面积对生物膜处理效果有很大影响,如选用的滤料比表面积达不到要求,需增大处理池面积,投资费用将增大。

所以总结以上工艺,主要有三点是企业需要关心的:
1. 所使用的工艺在脱氮除磷率方面是否达到满意的预期效果
2. 所使用的工艺在电耗、人员操作与设备扩容方面是否有利于企业经济效益
3. 所使用的工艺的时效性,如使用微生物菌处理污水,就要考虑所选用菌类功能的全面性,能否长时间适应和处理复杂的污水问题,一款好的菌类能为企业解决很多问题。
这些都是企业在针对各自使用的工艺时需要考虑到的问题。
声明:图片及部分文字素材取自网络
现在鸿淳环保科技生产的第三代微生物菌剂就能解决以上的问题。台湾微生物研究室27年技术沉淀成果,超高去除氨氮、COD等污染物质,去除率最高可达95%,微生物降解原理,高效、环保、操作便捷;一次性投入,系统稳定后无需持续添加。为您的企业创造更好的经济效益。
总氮处理原理的实际应用

总氮处理原理的实际应用
一、总氮处理相关概念
总氮处理包括氨氮处理、硝氮处理及有机氮处理,三者可以分别处理,也可以统一进行处理,在实际生产中,由于工业废水的复杂性,不同行业的废水往往有很大差别,例如:纺织行业使用大量颜料,造成废水中硝氮含量巨大;电镀行业使用氨水做缓冲剂,造成废水中氨氮偏高,而农药行业,利用大量有机物进行合成,使废水中含有大量有机氮。由此可知,对不同行业的不同废水不能一概而论,而要有针对性的对症去除。
二、总氮去除的两种思路
1.不同形态分别处理
1.1氨氮的去除方法
(1)生物法
硝化反应:氨首先在亚硝化菌的作用下转化为亚硝酸氮,在硝化菌的作用下,进一步转化为硝酸氮。
(2)氨吹脱法
水中的氨氮,多以氨离子和游离氨的状态存在,两者保持平衡,平衡关系为:
NH3+H2O→NH4++OH-
这一关系受pH的影响,当pH等于7时,氨氮多以NH4+的形式存在,而当pH为11时,则可促使氨从水中逸出。
(2)阳离子交换树脂法
沸石(天然离子交换树脂)成本低,对NH4+具有选择吸附能力,脱氮率可达90%-97%。
(3)折点加氯法
将Cl2(氯气)或Na(ClO)(次氯酸钠)加入水中,把污水中NH4+-N氧化为N2氮气的化学脱氮工艺。
2 NH4++3HOCl→N2+5H++3Cl-+3H2O
1.2有机氮的去除方法
(1)生物降解法
氨化反应:有机氮化合物,在氨化菌的作用下,分解、转化为氨态氮。
(2)高级氧化法
包括紫外氧化、臭氧氧化等,成本较高。
(3)物理吸附法
有机氮的吸附效果主要取决于溶解性物质的分子结构和吸附材料的表面负荷。在实际应用中,大部分有机氮不能被吸附,因此效果欠佳。
1.3硝态氮的去除方法
(1)生物法
反硝化作用:硝酸氮和亚硝酸氮在反硝化菌的作用下,被还原为气态氮的过程。应用较为广泛。
(2)离子交换法
是指硝酸根离子与树脂上的氯离子或碳酸氢根离子发生交换从而被树脂吸附的过程,存在的问题是常规强碱性阴离子交换树脂对硫酸根的选择能力最强。当废水中硫酸根浓度较高时,树脂将优先选择吸附硫酸根,而针对硝酸根离子的专用树脂仍在开发研究。
(3)化学法
由于硝酸根的大多数盐类均为易容物质,因此常规化学沉淀法并不可行,而化学还原法包括电化学还原法及活泼金属还原法,成本较高,且工艺并不成熟。
2.统一处理
1.1传统工艺--活性污泥法
传统活性污泥法包括一级物化处理和二级生化处理,构筑物包括格栅、沉砂池、初淀池、生化池、二沉池、絮凝池、沉淀池、消毒池等。整体工艺成熟但繁琐冗杂,需较多的基建设备,占地面积庞大,且对氮的脱除效率较低。
1.2新兴工艺--湛清HDN工艺
新兴湛清HDN工艺为传统工艺的升级工艺,从脱氮效率到占地面积,再从操作维护到后续处理均进行了改革及突破。HDN工艺实现了对传统脱氮效率的20倍提升,即:2.0kgN/m3.d,而占地面积仅需6m2,无需设置二沉池等配套装置,污泥产量大幅减少,同时实现了自动控制,节省了人力成本,并使运行成本可以控制在1元/吨水以下,在总氮排放标准迅速提高的一年内解决了很多老厂改造及园区新建工程的工艺缺陷,在多种废水处理中实现了应用。
了解污水处理,共建美丽郑州

了解污水处理,共建美丽郑州
美丽郑州探访小队的第四站,来到了荥阳污水处理厂。经过大巴车一个多小时的颠簸,我们的车靠边停到了一条小路上,下车后我们一路同行,伴随着蜻蜓蝴蝶的飞舞,伴随着野花的清香,和这阵阵蝉鸣穿过了一条芦苇丛生的石子路,便到达了荥阳第二污水处理厂的门口。
荥阳市污水处理厂于2014年建设,河南荥阳市污水处理厂采用较为先进的污水处理工艺, 其设计规模为2.5万立方米每日, 先期日处理规模达到2.5万立方米每日,属于小型污水处理厂,大型污水处理厂日处理规模大概为10万立方米。建设规模:脱氮改造3万吨∕天;污泥处理处置24吨∕天。 资金来源:财政+自筹资金。 总投资额:约1200万元。荥阳市污水处理厂建成后将极大地改善了周围水体环境,对治理水污染,保护当地流域水质和生态平衡具有十分重要的作用。
主体工艺为氧化沟主体工艺,出水标准满足《城镇污水处理厂污染物排放标准》排放一级A标准,处理水可直接外排,可以浇灌果树,灌溉农田,可以养鱼,用于市政绿化和道路洒水。
一级处理(物理处理):粗格栅、细格栅、曝气沉砂池
二级处理(生物处理):厌氧过程除磷、氧化沟主体工艺除去氨氮
三级处理(深度处理):杀菌、外排时加消毒剂
荥阳市第二污水处理厂的污水先经过污水提升泵房进行提后,在经过粗格栅、细格栅进行一级物理处理,荥阳污水处理厂的粗格栅栅条间隔为3.5厘米,细格栅栅条间隔为0.5毫米。日栅渣量一般情况下小于1千斤(下雨时情况有变)。
厌氧池:厌氧不需要曝气,不再充氧。厌氧池的主要作用为除氮,可以做到部分除磷,消解有机氮。通过厌氧菌和厌氧聚磷菌的作用,实现部分除磷。厌氧池的底部有两个搅拌器,作用是把水搅拌均匀,不沉淀。厌氧池为生物除磷,搅拌器可使厌氧聚磷菌分布均匀,充分发挥作用。厌氧池只能出去很小一部分磷,剩下的磷在三级处理中加药处理。
厌氧池比较浑浊是因为里面泥比较多,并不是因为添加了什么东西。除氮是通过二沉池回流,厌氧硝化的作用。后期加除磷剂。
厌氧池中的水来自曝气沉砂池,污泥通过污泥泵回流的作用来自二沉池,厌氧池中的泥进一步流到氧化沟。
杰普水质仪器在垃圾渗滤液工艺的应用和维护
污水处理怎样解决氨氮超标?

国内生物法比较多,污水处理厂中多是活性污泥法,连续流,硝化反硝化脱氮以及衍生工艺。
实现生化占地大幅缩减的总氮处理方法

实现生化占地大幅缩减的总氮处理方法
(苏州湛清环保科技有限公司 江苏 215300)
总氮的去除在几十年的污水处理进程中仍以生物法占据主导地位,生物法以其较低的成本和稳定的效果等优势得到大范围的应用,并且,生物法可同步控制多项指标,包括污水中的氮磷、COD、SS等,末端的生化池可保证出水水质较物化出水更为清澈。
如上图所示,生物法的最大的弊端是占地面积较大,根本原因是生物法的处理效率低,以对氮的去除效果而言,一方面脱氮能力仅为0.1kgN/m3,另一方面,实现这一脱氮效率的停留时间少则12h,多则30d。两者综合之下,污水以贮存方式长时间停留在污水站,造成废水堆积,使池体容积在设计时不仅要容纳实际生产水量,还要设计足够盈余,以便应对紧急状况。因此,缩减生化池容积的改进方向归根结底是提高脱氮负荷。(脱氮负荷是指单位时间、单位体积内,微生物能够消耗的氮素质量,单位是kgN/m3•d)
生化法提高脱氮负荷可以从以下几方面入手:
1.菌种选择与驯化:常规反硝化菌活性弱,耐受力差,容易在工业废水的冲击下死亡,对微生物进行长期驯化,物竞天择可使菌群提高耐受力,延长生理周期,活性的增强可提升微生物的代谢与繁殖能力,使微生物的可承受脱氮量随之升高。
2.反应器结构:在传统生化中,反硝化环节完成后产生的氮气不溶于水,而堆积的污泥制约着氮气的排出,氮气的滞留又会占据微生物富集的空间,影响微生物的富集,如此恶性循环,使反应死区越来越多,污泥的可利用里越来越低。改进反应器结构,提高氮气排放速率,可使反应器效率更高。
3.微生物富集模式:传统活性污泥法中菌体吸附在污泥之上,随污泥悬浮在水体之中,当污水进入池体时,悬浮污泥易被打散随水流排出池体,一方面影响出水水质,另一方面减少了污泥有效利用率,目前的改善方式包括生物接触氧化、生物移动床及生物固定床等。
在众多改进工艺中,将各方面不足加以改进后即为湛清HDN工艺。
湛清HDN工艺-核心技术
专业定制填料 天然玄武岩经过改性,表面亲水性提高,具有更丰富的微观孔道结构。反硝化微生物更容易附着在填料孔隙中,单位体积内的微生物数量得到大幅提升。
氮气释放技术 滤池内部流态经过特殊优化设计,建立了顺畅的排气微通道,促使生成的氮气快速从内部排出,减少反应器死区及无效空间,提高了反应器稳定性和脱氮效率。
高效脱氮菌种 由荷兰引进,近三年驯化,对工业废水有极好的耐受性,能在专属填料中保持超强活性并快速富集。
HDN工艺的脱氮效率经改造后高达2.0kgN/m3•d,占地面积缩减至10平方米以下,是污水处理中总氮去除工艺里冉冉升起的新星。
https://www.zhihu.com/search?type=content&q=%E7%94%9F%E7%89%A9%E8%84%B1%E6%B0%AE