中国给水排水2024年污水处理厂提标改造(污水处理提质增效)高级研讨会(第八届)邀请函暨征稿启事
 
当前位置: 首页 » 行业资讯 » 水业人物 » 正文

倪芃芃 中山大学土木工程学院教授、博士生导师

放大字体  缩小字体 发布日期:2020-10-29  浏览次数:2517
核心提示:倪芃芃 中山大学土木工程学院教授、博士生导师
中国给水排水2024年污水处理厂提标改造(污水处理提质增效)高级研讨会(第八届)邀请函暨征稿启事

中国给水排水2024年污水处理厂提标改造(污水处理提质增效)高级研讨会(第八届)邀请函暨征稿启事
 

个人简介

中山大学土木工程学院教授、博士生导师。加拿大女王大学岩土工程博士,师从加拿大工程院院士Ian D. Moore教授和加拿大岩土工程首席科学家W. Andy Take教授。近年来,主要从事岩土工程领域重大基础设施设计与安全评估研究,在土-结构相互作用、管道工程与非开挖技术、隧道工程、土压力计算理论、基础工程等方面取得一系列成果。在国际权威期刊《Géotechnique》、《Canadian Geotechnical Journal》、《Soils and Foundations》、《Tunnelling and Underground Space Technology》、《Geotextiles and Geomembranes》等上发表学术论文70余篇,同时担任40多个国际期刊的审稿人。

 

教育经历

2012年-2016年,加拿大女王大学(Queen's University),岩土工程,博士

2010年-2012年,欧盟Erasmus Mundus项目——法国格勒诺布尔第一大学(Université Joseph Fourier - Grenoble 1)和意大利帕维亚高等研究院(Istituto Universitario di Studi Superiori di Pavia),地震工程,硕士

2006年-2010年,东北大学,土木工程,学士

 

工作经历

2019年-至今,中山大学,土木工程学院,教授

2017年-2019年,新加坡南洋理工大学(Nanyang Technological University),土木与环境工程学院,Research Fellow

 

学术研究成果及贡献

研发了国际首个足尺寸管道正断层模拟试验箱,提出了校验柔性管道土弹簧模型和使用分布式边界条件模拟正断层位移荷载的修正计算方法,建立了运用机器学习技术对管道进行易损性风险分析的大数据分析理论;

提出了考虑位移的土压力计算理论,修正了土拱理论模型计算作用在管涵上的土压力分布;

提出了快速消散超静孔隙水压力实现桩基承载和排水固结有效融合的透水管桩技术,建立了模拟真实边界条件(连续排水边界、分布式排水边界)的固结理论。

 

科研著作

A. 管道工程与非开挖技术(Pipelines and trenchless technology)

[JP1] Xu, M., Cao, Y., Ni, P., and Mei, G. 2020. Infiltration analysis of perforated storm sewer: finite difference modelling versus field tests. Journal of Hydrology, 590: 125421.

[JP2] Ni, P., Mangalathu, S., and Liu, K. 2020. Enhanced fragility analysis of buried pipelines through Lasso regression. Acta Geotechnica, 15(2): 471-487.

[JP3] Jia, P., Zhao, W., Khoshghalb, A., Ni, P., Jiang, B., Chen, Y., and Li, S. 2020. A new model to predict ground surface settlement induced by jacked pipes with flanges. Tunnelling and Underground Space Technology, 98: 103330.

[JP4] Zhai, K., Fang, H., Guo, C., Ni, P., Fu, B., Wang, F., and Zhang, C. 2020. Strengthening of PCCP with broken wires using prestressed CFRP. Construction and Building Materials. doi: 10.1016/j.conbuildmat.2020.120903.

[JP5] Qin, X., and Ni, P. 2019. Kinematics of bell-spigot joints in vitrified clay pipelines under differential ground movement. Tunnelling and Underground Space Technology, 91: 103005.

[JP6] Ji, X., Zhao, W., Ni, P., Barla, M., Han, J., Jia, P., Chen, Y., and Zhang, C. 2019. A method to estimate the jacking force for pipe jacking in sandy soils. Tunnelling and Underground Space Technology, 90: 119-130.

[JP7] Qin, X., Ni, P., and Du, Y. 2019. Buried rigid pipe-soil interaction in dense and medium sand backfills under downward relative movement: 2D finite element analysis. Transportation Geotechnics. 21: 100286.

[JP8] Ni, P., Moore, I.D., and Take, W.A. 2018. Distributed fibre optic sensing of strains on buried full-scale PVC pipelines crossing a normal fault. Géotechnique, 68(1): 1-17.

[JP9] Ni, P., Moore, I.D., and Take, W.A. 2018. Numerical modeling of normal fault-pipeline interaction and comparison with centrifuge tests. Soil Dynamics and Earthquake Engineering, 105: 127-138.

[JP10] Ni, P., Mangalathu, S., and Yi, Y. 2018. Fragility analysis of continuous pipelines subject to transverse permanent ground deformation. Soils and Foundations, 58(6): 1400-1413.

[JP11] Ni, P., and Mangalathu, S. 2018. Fragility analysis of gray iron pipelines subjected to tunneling induced ground settlement. Tunnelling and Underground Space Technology, 76: 133-144.

[JP12] Ni, P., and Mangalathu, S. 2018. Simplified evaluation of pipe strains crossing a normal fault through the dissipated energy method. Engineering Structures, 167: 393-406.

[JP13] Ni, P., Qin, X., and Yi, Y. 2018. Numerical study of earth pressures on rigid pipes with tire-derived aggregate inclusions. Geosynthetics International, 25(5): 494-506.

[JP14] Ni, P., Qin, X., and Yi, Y. 2018. Use of tire-derived aggregate for seismic mitigation of buried pipelines under strike-slip faults. Soil Dynamics and Earthquake Engineering, 115: 495-506.

[JP15] Ji, X., Ni, P., Barla, M., Zhao, W., and Mei, G. 2018. Earth pressure on shield excavation face for pipe jacking considering arching effect. Tunnelling and Underground Space Technology, 72: 17-27.

[JP16] Qin, X., Ni, P., and Zhou, M. 2017. Improved analytical solution of vertical pressure on top of induced trench rigid culverts. Geosynthetics International, 24(6): 615-624.

[JP17] Saiyar, M., Ni, P., Take, W.A., and Moore, I.D. 2016. Response of pipelines of differing flexural stiffness to normal faulting. Géotechnique, 66(4): 275-286.

B. 隧道与基础工程(Tunnels and foundations)

[JP1] Chen, Z., Xiao, T., Feng, J., Ni, P., Chen, D., Mei, G., and Chen, Y. 2020. Mathematical characterization of pile-soil interface boundary for consolidation analysis of soil around permeable pipe pile. Canadian Geotechnical Journal. doi: 10.1139/cgj-2020-0337.

[JP2] Lin, Z., Guo, C., Ni, P., Cao, D., Huang, L., Guo, Z., and Dong, P. 2020. Experimental and numerical investigations into leakage behaviour of a novel prefabricated utility tunnel. Tunnelling and Underground Space Technology, 104: 103529.

[JP3] Lin, P., Ni, P., Guo, C., and Mei, G. 2020. Mapping soil nail loads using Federal Highway Administration (FHWA) simplified models and artificial neural network technique. Canadian Geotechnical Journal, 57(10): 1453-1471.

[JP4] Ren, Z., Ni, P., and Mei, G. 2020. Time effect of buoyant force reduction for underground structures in clays: model test and case study. International Journal of Geomechanics, 20(10): 04020185.

[JP5] Wang, X., Tan, W., Ni, P., Chen, Z., and Hu, S. 2020. Propagation of settlement in soft soils induced by tunneling. Tunnelling and Underground Space Technology, 99: 103378.

[JP6] Huang, F., Wu, C., Ni, P., Wan, G., Zheng, A. Jang, B.A., and Karekal, S. 2020. Experimental analysis of progressive failure behavior of rock tunnel with a fault zone using non-contact DIC technique. International Journal of Rock Mechanics and Mining Sciences, 132: 104355.

[JP7] Xu, M., Ni, P., Ding, X., and Mei, G. 2019. Physical and numerical modelling of axially loaded bored piles with debris at the pile tip. Computers and Geotechnics, 114: 103146.

[JP8] Ni, P., Mangalathu, S., Mei, G., and Zhao, Y. 2018. Laboratory investigation of pore pressure dissipation in clay around permeable piles. Canadian Geotechnical Journal, 55(9): 1257-1267.

[JP9] Ni, P., Mei, G., Zhao, Y., and Chen, H. 2018. Plane strain evaluation of stress paths for supported excavations under lateral loading and unloading. Soils and Foundations, 58(1): 146-159.

[JP10] Xu, M., Ni, P., Mei, G., and Zhao, Y. 2018. Load-settlement behaviour of bored piles with loose sediments at the pile tip: experimental, numerical and analytical study. Computers and Geotechnics, 102: 92-101.

[JP11] Ni, P., Song, L., Mei, G., and Zhao, Y. 2018. Predicting excavation-induced settlement for embedded footing: case study. International Journal of Geomechanics, 18(4): 05018001.

[JP12] Ni, P., Mangalathu, S., Mei, G., and Zhao, Y. 2017. Permeable piles: an alternative to improve the performance of driven piles. Computers and Geotechnics, 84: 78-87.

[JP13] Ni, P., Mangalathu, S., Mei, G., and Zhao, Y. 2017. Compressive and flexural behaviour of reinforced concrete permeable piles. Engineering Structures, 147: 316-327.

[JP14] Ni, P., Song, L., Mei, G., and Zhao, Y. 2017. Generalized nonlinear softening load-transfer model for axially loaded piles. International Journal of Geomechanics, 17(8): 04017019.

[JP15] Wang, S., Ni, P., and Guo, M. 2013. Spatial characterization of joint planes and stability analysis of tunnel blocks. Tunnelling and Underground Space Technology, 38: 357-367.

C. 土压力计算理论(Earth pressure calculation)

[JP1] Lin, P., Tang, L., and Ni, P. 2019. Field evaluation of subgrade soils under dynamic loads using orthogonal earth pressure transducers. Soil Dynamics and Earthquake Engineering, 121: 12-24.

[JP2] Ni, P., Song, L., Mei, G., and Zhao, Y. 2018. On predicting displacement-dependent earth pressure for laterally loaded piles. Soils and Foundations, 58(1): 85-96.

[JP3] Ni, P., Mangalathu, S., Song, L., Mei, G., and Zhao, Y. 2018. Displacement-dependent lateral earth pressure models. Journal of Engineering Mechanics, 144(6): 04018032.

[JP4] Ni, P., Mei, G., and Zhao, Y. 2017. Displacement-dependent earth pressures on rigid retaining walls with compressible geofoam inclusions: physical modeling and analytical solutions. International Journal of Geomechanics, 17(6): 04016132.

D. 高聚物注浆(Polymer grouting)

[JP1] Lin, Z., Guo, C., Cao, D., Ni, P., and Wang, F. 2020. An experimental study on the cutting failure of polymer grouting. Construction and Building Materials, 258, 119582.

E. 路基(Subgrade)

[JP1] Lin, P., Tang, L., and Ni, P. 2020. Generalized plastic mechanics-based constitutive model for estimation of dynamic stresses in unsaturated subgrade soils. International Journal of Geomechanics, 20(7): 04020084.

[JP2] Liu, K., Su, Q., Ni, P., Zhou, C., Zhao, W., and Yue, F. 2018. Evaluation on the dynamic performance of bridge approach backfilled with fibre reinforced lightweight concrete under high-speed train loading. Computers and Geotechnics, 104: 42-53.

F. 固结理论(Consolidation theory)

[JP1] Feng, J., Ni, P., Chen, Z., Mei, G., and Xu, M. 2020. Positioning design of horizontal drain in sandwiched clay-drain systems for land reclamation. Computers and Geotechnics, 127: 103777.

[JP2] Chen, Z., Ni, P., Chen, Y., and Mei, G. 2020. Plane-strain consolidation theory with distributed drainage boundary. Acta Geotechnica, 15(2): 489-508.

[JP3] Ni, P., Xu, K., Mei, G., and Zhao, Y. 2019. Effect of vacuum removal on consolidation settlement under a combined vacuum and surcharge preloading. Geotextiles and Geomembranes, 47(1): 12-22.

[JP4] Feng, J., Ni, P., and Mei, G. 2019. One-dimensional self-weight consolidation with continuous drainage boundary conditions: solution and application to clay-drain reclamation. International Journal for Numerical and Analytical Methods in Geomechanics, 43(8): 1634-1652.

[JP5] Tian, Y., Wu, W., Jiang, G., El Naggar, M.H., Mei, G., and Ni, P. 2019. Analytical solutions for vacuum preloading consolidation with prefabricated vertical drain based on elliptical cylinder model. Computers and Geotechnics, 116: 103202.

G. 土质处理(Soil treatment)

[JP1] Kou, H.L., Wu, C., Ni, P., and Jang, B.A. 2020. Assessment of erosion resistance of biocemented sandy slope subjected to wave actions. Applied Ocean Research, 105: 102401.

[JP2] Luo, Y., Yang, M., Ni, P., Peng, X., and Yuan, X. 2020. Degradation of rammed earth under wind-driven rain: the case of Fujian Tulou, China. Construction and Building Materials, 261, 119989.

[JP3] Ni, P., Yi, Y., and Liu, S. 2019. Bearing capacity of composite ground with soil-cement columns under earth fills: physical and numerical modeling. Soils and Foundations, 59(6): 2206-2219.

[JP4] Li, W., Ni, P., and Yi, Y. 2019. Comparison of reactive magnesia, quick lime, and ordinary Portland cement for stabilization/solidification of heavy metal-contaminated soils. Science of the Total Environment, 671: 741-753.

H. 边坡稳定性分析(Slope stability analysis)

[JP1] Xie, C., Ni, P., Xu, M., Mei, G., and Zhao, Y. 2020. Combined measure of geometry optimization and vegetation for expansive soil slopes. Computers and Geotechnics, 123: 103588.

[JP2] Pei, P., Zhao, Y., Ni, P., and Mei, G. 2020. A protective measure for expansive soil slopes based on moisture content control. Engineering Geology, 269: 105527.

[JP3] Ni, P., Mei, G., and Zhao, Y. 2018. Influence of raised groundwater level on the stability of unsaturated soil slopes. International Journal of Geomechanics, 18(12): 04018168.

[JP4] Ni, P., Wang, S., Zhang, S., and Mei, L. 2016. Response of heterogeneous slopes to increased surcharge load. Computers and Geotechnics, 78: 99-109.

 

获奖及荣誉

2019年,国家青年海外高层次人才引进计划

2019年,英国土木工程师学会(Institution of Civil Engineers - ICE),结构-土振动领域最佳论文奖(Tso Kung Hsieh Award),论文题目:Ni, P., Moore, I.D., and Take, W.A. 2018. Distributed fibre optic sensing of strains on buried full-scale PVC pipelines crossing a normal fault. Géotechnique, 68(1): 1-17.

2012年-2015年,加拿大自然科学与工程研究理事会,NSERC CREATE: STEWARD student scholarship

2010年-2012年,欧盟Erasmus Mundus项目,Category A scholarship

 

科研项目

考虑位移的柔性管道土压力计算理论及管土相互作用研究,国家自然科学基金面上项目,2021.01-2024.12,项目负责人。

广东省水库大坝安全风险识别及评估方法,广东省安全生产科学技术研究院,2020.09-2021.12,项目负责人。

地下工程结构减压抗浮技术研究,广西大学,2020.01-2022.12,项目负责人。

分布式排水边界下真空-堆载联合预压加固软土地基固结理论研究,广西防灾减灾与工程安全重点实验室开放基金,2019.10-2021.09,项目负责人。

高速铁路大断面隧道穿越地埋管线的工程灾害机理研究,高速铁路线路工程教育部重点实验室开放基金,2018.01-2020.12,项目负责人。

岩土工程,国家青年海外高层次人才引进计划,2019.12-2022.12,项目负责人。

 

学术兼职

国际土力学与岩土工程学会,TC 207: Soil-structure interaction(土-结构相互作用)技术委员会,委员。

中国岩石力学与工程学会地下空间分会,理事。

中国土木工程学会土力学及岩土工程分会青年工作委员会,副主任委员。

中国岩石力学与工程学会环境岩土工程分会青年工作委员会,副主任委员。

中美联合非开挖工程研究中心专家委员会,技术委员。

中华人民共和国自然资源部–加拿大女王大学培训项目,项目顾问,2014年-2016年。

评审专家:

国家留学基金委公派研究生项目

教育部学位中心学位论文评审

国际期刊副主编(Associate Editor):

International Journal of Geotechnical Engineering

国际期刊审稿(Reviewer):

Géotechnique, Journal of Geotechnical and Geoenvironmental Engineering, Canadian Geotechnical Journal, Soils and Foundations, Tunnelling and Underground Space Technology, Computers and Geotechnics, Geosynthetics International, Engineering Structures, Rock Mechanics and Rock Engineering, International Journal of Geomechanics, Journal of Pipeline Systems Engineering and Practice等

中文期刊青年编委:

隧道与地下工程灾害防治

中文期刊审稿:

工程力学

 
微信扫一扫关注中国水业网/>
</div>
<div class= 
 
[ 行业资讯搜索 ]  [ ]  [ 打印本文 ]  [ 关闭窗口 ]

 
0条 [查看全部]  相关评论

 
推荐图文
推荐行业资讯
点击排行