PDF下载
[1]程美悦,王少坡,孙昊飞,等.中低温下Anammox-HAP工艺的脱氮除磷性能[J].中国给水排水,2025,41(9):1-7.
CHENGMei-yue,WANGShao-po,SUNHao-fei,et al.Nitrogen and Phosphorus Removal Performance of Anammox-HAP Coupling Process under Medium and Low Temperature Conditions[J].China Water & Wastewater,2025,41(9):1-7.点击复制
中低温下Anammox-HAP工艺的脱氮除磷性能
中国给水排水[ISSN:1000-4062/CN:12-1073/TU] 卷: 第41卷 期数: 2025年第9期 页码: 1-7 栏目: 出版日期: 2025-05-01
Title:Nitrogen and Phosphorus Removal Performance of Anammox-HAP Coupling Process under Medium and Low Temperature Conditions
作者:程美悦1,2, 王少坡1,2, 孙昊飞1,2, 崔晓宇3, 赵健慧1,2, 刘灵婕1,2, 常晶1,2(1.天津城建大学 环境与市政工程学院,天津 300384;2.天津市水质科学与技术重点实验室,天津 300384;3.河北泛亚工程设计有限公司 华北分公司,天津 300308)
Author(s):CHENG Mei-yue1,2, WANG Shao-po1,2, SUN Hao-fei1,2, CUI Xiao-yu3, ZHAO Jian-hui1,2, LIU Ling-jie1,2, CHANG Jing1,2(1. School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China; 2. Tianjin Key Laboratory of Water Quality Science and Technology, Tianjin 300384, China; 3. North China Branch, Hebei Fanya Engineering Design Co.Ltd., Tianjin 300308, China)
关键词:厌氧附着膜膨胀床反应器; 厌氧氨氧化; 羟基磷灰石; 同步脱氮除磷; 颗粒污泥; 厌氧氨氧化菌
Keywords:anaerobic attached film expanded bed reactor; Anammox; HAP; simultaneous nitrogen and phosphorus removal; granular sludge; AnAOB
摘要:采用厌氧附着膜膨胀床(AAFEB)反应器,考察了厌氧氨氧化-羟基磷灰石(Anammox-HAP)耦合工艺在中低温条件下的同步脱氮除磷性能以及颗粒污泥特性和反应器内微生物相对丰度的变化。结果表明,当温度由30 ℃降至25 ℃时,总氮去除率保持在70%~80%之间,总氮去除负荷保持在(2.95±0.09)~(2.69±0.14) kg/(m3·d);相应地,磷的去除率由61.2%逐渐下降至47.4%,说明25 ℃不利于该系统除磷;该阶段反应器内微生物分泌的EPS总量差别不大,污泥主要呈颗粒状,中部颗粒污泥平均粒径最大,约为650 μm。当温度降至15 ℃时,脱氮除磷效果恶化,总氮去除率由65%逐渐降至23%,总氮去除负荷由(1.14±0.02) kg/(m3·d)逐渐降至(0.23±0.06) kg/(m3·d);相应地,磷的去除率由48.4%逐渐下降至15.9%;该阶段反应器内EPS产量降低,颗粒污泥出现解体,污泥粒径减小。16S rRNA基因测序发现,厌氧氨氧化菌为主要的脱氮细菌,其中,unclassified_Candidatus_Brocadiaceae的相对丰度始终最高。与上部污泥相比,底部污泥中Candidatus_Kuenenia的相对丰度随温度的降低而上升,反应器底部更利于该菌的生长和繁殖。
Abstract:The performance of simultaneous nitrogen and phosphorus removal, the characteristics of granular sludge and the changes in the relative abundance of microorganisms in the anaerobic ammonium oxidation-hydroxyapatite (Anammox-HAP) coupling process at medium and low temperatures were investigated using an anaerobic attached film expanded bed (AAFEB) reactor. When the temperature decreased from 30 ℃ to 25 ℃, the total nitrogen(TN) removal efficiency was maintained within the range of 70% to 80%, the TN removal rate remained at (2.95±0.09)-(2.69±0.14) kg/(m3·d) ; while the phosphorus removal efficiency gradually decreased from 61.2% to 47.4%, indicating that 25 ℃ was not conducive to the phosphorus removal; in this stage, the total amount of EPS secreted by microorganisms was not much different, the sludge was mainly granular, and the average particle size of the granular sludge in the middle was the largest, about 650 μm. When the temperature dropped to 15 ℃, the effect of nitrogen and phosphorus removal deteriorated, the TN removal efficiency gradually decreased from 65% to 23%, the total nitrogen removal rate gradually decreased from (1.14±0.02) kg/(m3·d) to (0.23±0.06) kg/(m3·d); correspondingly, the removal rate of phosphorus gradually decreased from 48.4% to 15.9%; in this stage, the EPS production decreased, the granular sludge disintegrated, and the sludge particle size decreased. 16S rRNA gene sequencing showed that anaerobic ammonia oxidizing bacteria (AnAOB) was the main denitrifying bacteria in the system, and the relative abundance of unclassified_ Candidateus_Brocadaceae was always the highest. Compared with the upper sludge, the relative abundance of Candidatus_Kuenenia in the bottom sludge increased with decreasing temperature, and the bottom of the reactor was more conducive to the growth and reproduction of this bacteria.
相似文献/References:
[1]董堃,魏学睿,徐泸峰,等.响应曲面法优化Anammox-MBR工艺及膜表征[J].中国给水排水,2022,38(1):95.
DONG Kun,WEI Xue-rui,XU Lu-feng,et al.Optimization of Anammox-MBR Process by Response Surface Methodology and Membrane Characterization[J].China Water & Wastewater,2022,38(9):95.
[2]陈彦霖,郑蕊,隋倩雯,等.厌氧氨氧化处理猪场厌氧消化液的工程应用研究[J].中国给水排水,2022,38(3):7.
CHEN Yan-lin,ZHENG Rui,SUI Qian-wen,et al.Engineering Application of Anammox in Treatment of Anaerobic Digestion Liquor in Swine Farm[J].China Water & Wastewater,2022,38(9):7.
[3]靳翱玮,廖方新,孙远博,等.序批式运行Anammox颗粒污泥的有机碳源胁迫效应[J].中国给水排水,2022,38(3):14.
JIN Ao-wei,LIAO Fang-xin,SUN Yuan-bo,et al.Stress of High Concentration Organic Carbon Source on Anammox Granular Sludge under Sequencing Batch Operation[J].China Water & Wastewater,2022,38(9):14.
[4]张余健,杨一宸,马斌,等.低碳城市污水脱氮工艺中硝化颗粒污泥的培养[J].中国给水排水,2023,39(7):17.
ZHANGYu-jian,YANGYi-chen,MABin,et al.Cultivation of Nitrifying Granular Sludge in Low-carbon Municipal Wastewater Nitrogen Removal Process[J].China Water & Wastewater,2023,39(9):17.
[5]李啸川,闫昊,苑泉,等.城市污水双泥龄复合脱氮工艺的脱氮机理分析[J].中国给水排水,2023,39(9):10.
LIXiao-chuan,YANHao,YUANQuan,et al.Analysis on Denitrification Mechanism of Double-SRT Hybrid Denitrification Process for Municipal Wastewater Treatment[J].China Water & Wastewater,2023,39(9):10.
[6]胡兰兰,孙利利,陆茵,等.COD预处理对CPNA工艺尿液脱氮效率的影响[J].中国给水排水,2023,39(17):10.
HULan-lan,SUNLi-li,LUYin,et al.Effect of COD Pretreatment on Urine Nitrogen Removal Efficiency of CPNA Process[J].China Water & Wastewater,2023,39(9):10.
[7]李旭,周鑫,王共磊,等.全程氨氧化菌(Comammox)在污水生物脱氮中的应用进展[J].中国给水排水,2023,39(22):46.
LIXu,ZHOUXin,WANGGong-lei,et al.Advances in the Application of Comammox in Biological Nitrogen Removal from Wastewater[J].China Water & Wastewater,2023,39(9):46.
[8]严子春,焦陇珍,唐瑞祥.有机物存在下Fe2+对厌氧氨氧化脱氮性能的影响[J].中国给水排水,2023,39(23):68.
YANZi-chun,JIAOLong-zhen,TANGRui-xiang.Effect of Fe2+ on Nitrogen Removal Performance of Anammox in the Presence of Organic Matter[J].China Water & Wastewater,2023,39(9):68.
[9]牛泽栋,袁林江,杨睿,等.UASB中厌氧污泥脱铵及与硫酸盐还原的关系[J].中国给水排水,2024,40(1):22.
NIUZe-dong,YUANLin-jiang,YANGRui,et al.Relationship between Deammoniumization of Anaerobic Sludge and Sulfate Reduction in UASB[J].China Water & Wastewater,2024,40(9):22.
[10]朱薇,张晶,游宏坤,等.污泥-煤矸石基活性炭的制备及对Anammox的促进[J].中国给水排水,2024,40(7):113.
ZHUWei,ZHANGJing,YOUHong-kun,et al.Preparation of Sludge and Coal Gangue Based Activated Carbon and Its Promotion to Anammox[J].China Water & Wastewater,2024,40(9):113.
更新日期/Last Update: 2025-05-01
[1]程美悦,王少坡,孙昊飞,等.中低温下Anammox-HAP工艺的脱氮除磷性能[J].中国给水排水,2025,41(9):1-7.
CHENGMei-yue,WANGShao-po,SUNHao-fei,et al.Nitrogen and Phosphorus Removal Performance of Anammox-HAP Coupling Process under Medium and Low Temperature Conditions[J].China Water & Wastewater,2025,41(9):1-7.
点击复制
中低温下Anammox-HAP工艺的脱氮除磷性能
中国给水排水[ISSN:1000-4062/CN:12-1073/TU] 卷: 第41卷 期数: 2025年第9期 页码: 1-7 栏目: 出版日期: 2025-05-01
- Title:
- Nitrogen and Phosphorus Removal Performance of Anammox-HAP Coupling Process under Medium and Low Temperature Conditions
- 作者:
- 程美悦1,2, 王少坡1,2, 孙昊飞1,2, 崔晓宇3, 赵健慧1,2, 刘灵婕1,2, 常晶1,2
- (1.天津城建大学 环境与市政工程学院,天津 300384;2.天津市水质科学与技术重点实验室,天津 300384;3.河北泛亚工程设计有限公司 华北分公司,天津 300308)
- Author(s):
- CHENG Mei-yue1,2, WANG Shao-po1,2, SUN Hao-fei1,2, CUI Xiao-yu3, ZHAO Jian-hui1,2, LIU Ling-jie1,2, CHANG Jing1,2
- (1. School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China; 2. Tianjin Key Laboratory of Water Quality Science and Technology, Tianjin 300384, China; 3. North China Branch, Hebei Fanya Engineering Design Co.Ltd., Tianjin 300308, China)
- 关键词:
- 厌氧附着膜膨胀床反应器; 厌氧氨氧化; 羟基磷灰石; 同步脱氮除磷; 颗粒污泥; 厌氧氨氧化菌
- Keywords:
- anaerobic attached film expanded bed reactor; Anammox; HAP; simultaneous nitrogen and phosphorus removal; granular sludge; AnAOB
- 摘要:
- 采用厌氧附着膜膨胀床(AAFEB)反应器,考察了厌氧氨氧化-羟基磷灰石(Anammox-HAP)耦合工艺在中低温条件下的同步脱氮除磷性能以及颗粒污泥特性和反应器内微生物相对丰度的变化。结果表明,当温度由30 ℃降至25 ℃时,总氮去除率保持在70%~80%之间,总氮去除负荷保持在(2.95±0.09)~(2.69±0.14) kg/(m3·d);相应地,磷的去除率由61.2%逐渐下降至47.4%,说明25 ℃不利于该系统除磷;该阶段反应器内微生物分泌的EPS总量差别不大,污泥主要呈颗粒状,中部颗粒污泥平均粒径最大,约为650 μm。当温度降至15 ℃时,脱氮除磷效果恶化,总氮去除率由65%逐渐降至23%,总氮去除负荷由(1.14±0.02) kg/(m3·d)逐渐降至(0.23±0.06) kg/(m3·d);相应地,磷的去除率由48.4%逐渐下降至15.9%;该阶段反应器内EPS产量降低,颗粒污泥出现解体,污泥粒径减小。16S rRNA基因测序发现,厌氧氨氧化菌为主要的脱氮细菌,其中,unclassified_Candidatus_Brocadiaceae的相对丰度始终最高。与上部污泥相比,底部污泥中Candidatus_Kuenenia的相对丰度随温度的降低而上升,反应器底部更利于该菌的生长和繁殖。
- Abstract:
- The performance of simultaneous nitrogen and phosphorus removal, the characteristics of granular sludge and the changes in the relative abundance of microorganisms in the anaerobic ammonium oxidation-hydroxyapatite (Anammox-HAP) coupling process at medium and low temperatures were investigated using an anaerobic attached film expanded bed (AAFEB) reactor. When the temperature decreased from 30 ℃ to 25 ℃, the total nitrogen(TN) removal efficiency was maintained within the range of 70% to 80%, the TN removal rate remained at (2.95±0.09)-(2.69±0.14) kg/(m3·d) ; while the phosphorus removal efficiency gradually decreased from 61.2% to 47.4%, indicating that 25 ℃ was not conducive to the phosphorus removal; in this stage, the total amount of EPS secreted by microorganisms was not much different, the sludge was mainly granular, and the average particle size of the granular sludge in the middle was the largest, about 650 μm. When the temperature dropped to 15 ℃, the effect of nitrogen and phosphorus removal deteriorated, the TN removal efficiency gradually decreased from 65% to 23%, the total nitrogen removal rate gradually decreased from (1.14±0.02) kg/(m3·d) to (0.23±0.06) kg/(m3·d); correspondingly, the removal rate of phosphorus gradually decreased from 48.4% to 15.9%; in this stage, the EPS production decreased, the granular sludge disintegrated, and the sludge particle size decreased. 16S rRNA gene sequencing showed that anaerobic ammonia oxidizing bacteria (AnAOB) was the main denitrifying bacteria in the system, and the relative abundance of unclassified_ Candidateus_Brocadaceae was always the highest. Compared with the upper sludge, the relative abundance of Candidatus_Kuenenia in the bottom sludge increased with decreasing temperature, and the bottom of the reactor was more conducive to the growth and reproduction of this bacteria.
相似文献/References:
[1]董堃,魏学睿,徐泸峰,等.响应曲面法优化Anammox-MBR工艺及膜表征[J].中国给水排水,2022,38(1):95.
DONG Kun,WEI Xue-rui,XU Lu-feng,et al.Optimization of Anammox-MBR Process by Response Surface Methodology and Membrane Characterization[J].China Water & Wastewater,2022,38(9):95.
[2]陈彦霖,郑蕊,隋倩雯,等.厌氧氨氧化处理猪场厌氧消化液的工程应用研究[J].中国给水排水,2022,38(3):7.
CHEN Yan-lin,ZHENG Rui,SUI Qian-wen,et al.Engineering Application of Anammox in Treatment of Anaerobic Digestion Liquor in Swine Farm[J].China Water & Wastewater,2022,38(9):7.
[3]靳翱玮,廖方新,孙远博,等.序批式运行Anammox颗粒污泥的有机碳源胁迫效应[J].中国给水排水,2022,38(3):14.
JIN Ao-wei,LIAO Fang-xin,SUN Yuan-bo,et al.Stress of High Concentration Organic Carbon Source on Anammox Granular Sludge under Sequencing Batch Operation[J].China Water & Wastewater,2022,38(9):14.
[4]张余健,杨一宸,马斌,等.低碳城市污水脱氮工艺中硝化颗粒污泥的培养[J].中国给水排水,2023,39(7):17.
ZHANGYu-jian,YANGYi-chen,MABin,et al.Cultivation of Nitrifying Granular Sludge in Low-carbon Municipal Wastewater Nitrogen Removal Process[J].China Water & Wastewater,2023,39(9):17.
[5]李啸川,闫昊,苑泉,等.城市污水双泥龄复合脱氮工艺的脱氮机理分析[J].中国给水排水,2023,39(9):10.
LIXiao-chuan,YANHao,YUANQuan,et al.Analysis on Denitrification Mechanism of Double-SRT Hybrid Denitrification Process for Municipal Wastewater Treatment[J].China Water & Wastewater,2023,39(9):10.
[6]胡兰兰,孙利利,陆茵,等.COD预处理对CPNA工艺尿液脱氮效率的影响[J].中国给水排水,2023,39(17):10.
HULan-lan,SUNLi-li,LUYin,et al.Effect of COD Pretreatment on Urine Nitrogen Removal Efficiency of CPNA Process[J].China Water & Wastewater,2023,39(9):10.
[7]李旭,周鑫,王共磊,等.全程氨氧化菌(Comammox)在污水生物脱氮中的应用进展[J].中国给水排水,2023,39(22):46.
LIXu,ZHOUXin,WANGGong-lei,et al.Advances in the Application of Comammox in Biological Nitrogen Removal from Wastewater[J].China Water & Wastewater,2023,39(9):46.
[8]严子春,焦陇珍,唐瑞祥.有机物存在下Fe2+对厌氧氨氧化脱氮性能的影响[J].中国给水排水,2023,39(23):68.
YANZi-chun,JIAOLong-zhen,TANGRui-xiang.Effect of Fe2+ on Nitrogen Removal Performance of Anammox in the Presence of Organic Matter[J].China Water & Wastewater,2023,39(9):68.
[9]牛泽栋,袁林江,杨睿,等.UASB中厌氧污泥脱铵及与硫酸盐还原的关系[J].中国给水排水,2024,40(1):22.
NIUZe-dong,YUANLin-jiang,YANGRui,et al.Relationship between Deammoniumization of Anaerobic Sludge and Sulfate Reduction in UASB[J].China Water & Wastewater,2024,40(9):22.
[10]朱薇,张晶,游宏坤,等.污泥-煤矸石基活性炭的制备及对Anammox的促进[J].中国给水排水,2024,40(7):113.
ZHUWei,ZHANGJing,YOUHong-kun,et al.Preparation of Sludge and Coal Gangue Based Activated Carbon and Its Promotion to Anammox[J].China Water & Wastewater,2024,40(9):113.
更新日期/Last Update: 2025-05-01