课题组主要从事环境、化学与材料交叉领域的研究,研究兴趣主要涉及多相催化法转化生物质基原料为高价值化学品和液体燃料、电催化调控清洁能源转化、光电催化废物降解、CO2还原、能源存储等,相关研究成果已在Angew. Chem. Int. Ed., Small, J. Mater. Chem., J. Clean Prod., Green Chem., Energy, Fuel, Appl. Catal. A&B, JPCC, ElectroChem. Commun. ACS Sustainable Chem. Eng.等刊物上发表45篇SCI论文(第一/通讯作者26篇),其中第一作者中有6篇论文为ESI Top 1% 高引论文及杂志的“Top 25 Hottest Articles”, 个人H因子为20,论文SCI引用1000多次,担任两个国际期刊的区域主编和1个国际期刊的编委,为Adv. Energy Mater., JACS, Angew, ACS Catal., Biomaterials, Appl. Catal. B, J. Catal., Green Chem., ChemsusChem, RESR,JCR, AIChE J等37个国际杂志的审稿人,先后参与欧洲杰出人才计划,德国政府Cluster of excellence, 加拿大 NSERC, 美国空军部项目和国家自然科学基金青年基金,与美国,加拿大、德国、英国等国家著名高校有着密切的联系与合作。
联系方式
地址:广州大学城外环东路132号中山大学东校区环境科学与工程学院A501(510006)
E-mail: yank9@mail.sysu.edu.cn
欢迎环境、材料、化学等学科感兴趣的本科生、硕士、博士、博士后、专职科研人员、副研究员和特聘研究员加盟。
教育经历
2008/10-2011 /12, 德国马普煤炭研究所、亚琛工业大学,绿色催化,博士导师(Walter Leitner教授)
2005/09-2008/07, 太原理工大学,物理化学,硕士(导师 谢鲜梅 教授)
2001/09-2005 /07, 安徽工程大学,工程学士
工作经历
2016/12 -至今,中山大学环境科学与工程学院,“百人计划”教授,博士生导师。
2013/12 -2016/12,美国布朗大学,工学院, Postdoctoral Research Associate
2012/01 - 2013/11,加拿大安省政府博士后Fellowship,胡首大学
2011/06-2011/12,亚琛工业大学,Technical Chemistry and Petrochemistry,Chemist
科研项目
目前主要主持在研项目:
1. 环境友好催化,中山大学“百人计划”启动项目,2016.12-2019.12
2. 绿色合成纳米双金属RuNi催化剂在转化生物质基乙酰丙酸为液体燃料戊酸戊酯中的研究,国家自然科学基金面上项目,2018.01-2021.12
研究领域
1. 开发环境友好材料实现有效环境催化
2. 固体废物控制与资源化
3. 清洁生产与清洁能源
获奖情况
2013年获Emerging Scientist Award
2012年加拿大安省政府博士后Fellowship
2008年获 德国马普协会全额奖学金
2008年获山西省优秀毕业生
2007年获武尽杰冀照明一等奖学金
2005年全国大学生英语写作大赛安徽省三等奖
代表性论文(* 通讯联系人)
Book chapters
1. K. Yan,* et al. Recent development of metal nanoparticles catalysts and their use for efficient hydrogenation of biomass-derived levulinic acid in “Green Processes for Nanotechnology: From Inorganic to Bioinspired Nanomaterials”, Edited by Vladimir A. Basiuk and Elena V. Basiuk. Springer. 2016.
2. K. Yan,* et al. Producton of gamma-valerolactone from biomass in “Production of Platform Chemicals from Renewable Resources”. Edited by Zhen Fang, Richard L. Smith, Jr., Xinhua Qi. Springer. 2017.
Articles
1. K. Yan,* Y. Liu, Y. Lu, J. Chai, L. Sun, Catalytic application of layered double hydroxides-derived catalysts for the conversion of biomass-derived molecules. Catalysis Science & Technology. 2017, 7, 1622.
2. K. Yan, SK. Kim, A. Khorshidi, P. Guduru,* A. Peterson*, High Elastic Strain Directly Tunes the Hydrogen Evolution Reaction on Tungsten Carbide.JPCC, 2017. 121,6177.
3. Y. Qiao, N. Said, M. Rauser, K. Yan, F. Qin, N. Theyssen, W. Leitner*, Preparation of SBA-15 supported Pt/Pd bimetallic catalysts using supercritical fluid reactive deposition: how do solvent effects during material synthesis affect catalytic properties? Green Chem., 2017, 19, 977.
4. K. Yan, T. Adit Maark, A. Khorshidi, A. Peterson*, P. Guduru,* The Influence of Elastic Strain on Catalytic Activity in the Hydrogen Evolution Reaction. Angew. Chem. Int. Ed. 2016, 55, 6175-6181; German Version: 2016, 128, 6283.
5. K. Yan,* Y. Lu. Direct growth of MoS2 microsphere on Ni foam as a hybrid nanocomposite efficient for oxygen evolution reaction. Small 2016,12, 2975.
6. K. Yan,* G. Wu, et al.. Recent advances in the synthesis of layered double hydroxides-based materials and their efficient use in hydrogen and oxygen evolution. Energy Techon. 2016, 4, 354. (Editor Invited).
7. K. Yan,* Y. Yang, et al. Facile synthesis of thin NiFe-layered double hydroxides nanosheets efficient for oxygen evolution. Electrochem. Commun. 2016, 62, 24.
8. K. Yan,* Y. Yang, et al. Catalytic reactions of gamma-valerolactone: a feedstock for fuels dna chemicals. Appl. Catal. B: Environ. 2015, 179, 292.
9. K. Yan, T. lafleu, et al. Cascade upgrading of gamma-valerolactone to biofuels. Chem. Commun. 2015, 51, 6894.
10. K. Yan,* C. Jarvis, et al. Production and Catalytic Transformation of Levulinic Acid: A Platform for Fuels and Commodity Chemicals. Renew. Sustain. Energy Rev. 2015, 51, 986. .
11. K. Yan, G. Wu.* Titanium Dioxide Microsphere-Derived Materials for Solar Fuel Hydrogen Generation. ACS Sustain. Chem. Eng. 2015, 3, 779.
12. K. Yan, G. Wu, C. Jarvis, et al. Facile synthesis of porous microspheres composed of TiO2 nanorods with high photocatalytic activity for hydrogen production. Appl. Catal. B: Environ. 2014, 148, 281.
13. K. Yan,* G. Wu, et al. Production, properties and catalytic hydrogenation of furfural to fuel additives and value-added chemicals. Renew. Sustain. Energy Rev. 2014, 38, 663.
14. K. Yan,* G. Wu, et al. Clean and selective production of γ-valerolactone from biomass-derived levulinic acid catalyzed by recyclable Pd nanoparticle catalyst. J. Clean. Prod. 2014, 72, 230.
15. K. Yan,* A. Chen. Selective hydrogenation of furfural and levulinic acid to biofuels on the ecofriendly Cu-Fe catalyst. Fuel 2014, 115, 101.
16. G. Wu, S. Thind, J. Wen, K. Yan, et al. A novel nanoporous
17. K. Yan,* A. Chen. Efficient hydrogenation of biomass-derived furfural and levulinic acid on the facilely synthesized noble-metal-free Cu-Cr catalyst. Energy 2013, 58, 357.
18. K. Yan,* T Lafleur, et al. Highly selective production of value-added γ-valerolactone from biomass-derived levulinic acid using the robust Pd nanoparticles. Appl. Catal. A Gen. 2013, 468, 52.